客服是企業(yè)與客戶之間提供聯(lián)絡(luò)的重要紐帶,在越來(lái)越重視用戶體驗(yàn)和評(píng)價(jià)的當(dāng)下,客服質(zhì)量的高低直接影響了企業(yè)未來(lái)發(fā)展的命運(yùn)。
在客服行業(yè)發(fā)展的初期,一般為客戶在產(chǎn)品出現(xiàn)問(wèn)題后撥打商家電話,類似售后服務(wù)之類的。然后出現(xiàn)了IVR菜單導(dǎo)航,用戶根據(jù)語(yǔ)音提示按鍵操作。以上兩種模式一是服務(wù)比較滯后,二是操作復(fù)雜,用戶體驗(yàn)都差。
現(xiàn)在隨著語(yǔ)音識(shí)別技術(shù)的不斷發(fā)展,用戶只要根據(jù)語(yǔ)音提示說(shuō)出需要辦理的業(yè)務(wù),后臺(tái)通過(guò)智能工單系統(tǒng)自動(dòng)分配到對(duì)應(yīng)的客服。但此時(shí)的技術(shù)還不成熟,主要是基于關(guān)鍵詞檢索,所以經(jīng)常會(huì)出現(xiàn)系統(tǒng)被問(wèn)傻的情況,用戶體驗(yàn)依舊很差。
2022年開(kāi)始,以ChatGPT為主的大模型將客戶聯(lián)絡(luò)帶入了全新的發(fā)展階段。大模型可以在多輪對(duì)話的基礎(chǔ)上,聯(lián)系上下文,給用戶更準(zhǔn)確的回答。在用戶多次詢問(wèn)無(wú)果的時(shí)候,可以直接轉(zhuǎn)接人工進(jìn)行處理,前期的對(duì)話內(nèi)容也會(huì)進(jìn)行轉(zhuǎn)接,用戶無(wú)需再次重復(fù)自己的問(wèn)題。這種客服對(duì)話流程的無(wú)縫銜接,極大地提升了用戶體驗(yàn)和服務(wù)效率。 隨著醫(yī)療信息化和生物技術(shù)數(shù)十年的高速發(fā)展,醫(yī)療數(shù)據(jù)的類型和規(guī)模正以前所未有的速度快速增長(zhǎng)。廣東知識(shí)庫(kù)系統(tǒng)大模型怎么訓(xùn)練
隨著人工智能技術(shù)的不斷發(fā)展,大模型可以通過(guò)深度學(xué)習(xí)算法對(duì)海量數(shù)據(jù)進(jìn)行訓(xùn)練,具備了強(qiáng)大的語(yǔ)義理解和生成能力。知識(shí)庫(kù)則是存儲(chǔ)了大量的結(jié)構(gòu)化數(shù)據(jù)和實(shí)體關(guān)系的數(shù)據(jù),將大模型與知識(shí)庫(kù)相結(jié)合,可以進(jìn)一步提升知識(shí)庫(kù)管理和應(yīng)用的智能性。大模型可以通過(guò)學(xué)習(xí)知識(shí)庫(kù)中的數(shù)據(jù),提升問(wèn)題系統(tǒng)的準(zhǔn)確性和覆蓋范圍。另外,大模型通過(guò)分析用戶的興趣和偏好,結(jié)合知識(shí)庫(kù)中的實(shí)體關(guān)系,可以為用戶提供個(gè)性化的推薦服務(wù)。
杭州音視貝科技公司基于通用大模型研發(fā)了知識(shí)庫(kù)系統(tǒng)的垂直大模型。知識(shí)庫(kù)系統(tǒng)支持本地化部署,本地知識(shí)庫(kù)上傳,上傳文件類型可以是文檔、圖片、音頻或視頻,實(shí)現(xiàn)大模型對(duì)私域知識(shí)庫(kù)的再利用。對(duì)于數(shù)據(jù)隱私性要求不是很高,成本管控比較嚴(yán)格的時(shí)候可以采用SAAS部署方式,問(wèn)題在本地知識(shí)庫(kù)沒(méi)有得到解決后,可以繼續(xù)求助于互聯(lián)網(wǎng)這個(gè)更大的知識(shí)庫(kù)。 廣東中小企業(yè)大模型怎么訓(xùn)練相對(duì)于較小模型而言,大模型具有更強(qiáng)的計(jì)算能力和表達(dá)能力,能夠更好地捕捉數(shù)據(jù)中的復(fù)雜模式和關(guān)聯(lián)關(guān)系。
大模型(Maas)將與Iaas、Paas和Saas一起共同成為云平臺(tái)的構(gòu)成要素,杭州音視貝科技公司的大模型的行業(yè)解決方案,通過(guò)將現(xiàn)有的應(yīng)用系統(tǒng)經(jīng)過(guò)AI訓(xùn)練和嵌入后,由現(xiàn)在的“一網(wǎng)協(xié)同”、“一網(wǎng)通辦”、“一網(wǎng)統(tǒng)管”等協(xié)同平臺(tái)升級(jí)為“智能協(xié)同”、“智能通辦”、“智能統(tǒng)管”等智能平臺(tái),真正實(shí)現(xiàn)從“部門(mén)*”到“整體”、由“被動(dòng)服務(wù)”到“主動(dòng)服務(wù)”、從“24小時(shí)在線服務(wù)”向“24小時(shí)在場(chǎng)服務(wù)”的升級(jí)轉(zhuǎn)變。
服務(wù)效率和服務(wù)質(zhì)量的提高,人民**辦事必定會(huì)更加便捷,其滿意度也會(huì)越來(lái)越高??梢岳么竽P涂焖贆z索相關(guān)信息、進(jìn)行數(shù)據(jù)分析和可視化,從而支持決策制定和政策評(píng)估。同時(shí)還可以利用大模型進(jìn)行情感分析,分析市民和企業(yè)工作的態(tài)度和情感,這有助于更好地了解社會(huì)輿情,及時(shí)調(diào)整政策和措施。
國(guó)內(nèi)比較出名大模型主要有:
1、ERNIE(EnhancedRepresentationthroughkNowledgeIntEgration):ERNIE是由百度開(kāi)發(fā)的一個(gè)基于Transformer結(jié)構(gòu)的預(yù)訓(xùn)練語(yǔ)言模型。ERNIE在自然語(yǔ)言處理任務(wù)中取得了較好的性能,包括情感分析、文本分類、命名實(shí)體識(shí)別等。
2、HANLP(HanLanguageProcessing):HANLP是由中國(guó)人民大學(xué)開(kāi)發(fā)的一個(gè)中文自然語(yǔ)言處理工具包,其中包含了一些中文大模型。例如,HANLP中的大模型包括中文分詞模型、詞法分析模型、命名實(shí)體識(shí)別模型等。
3、DeBERTa(Decoding-enhancedBERTwithdisentangledattention):DeBERTa是由華為開(kāi)發(fā)的一個(gè)基于Transformer結(jié)構(gòu)的預(yù)訓(xùn)練語(yǔ)言模型。DeBERTa可以同時(shí)學(xué)習(xí)局部關(guān)聯(lián)和全局關(guān)聯(lián),提高了模型的表示能力和上下文理解能力。
4、THUNLP(TsinghuaUniversityNaturalLanguageProcessingGroup):清華大學(xué)自然語(yǔ)言處理組(THUNLP)開(kāi)發(fā)了一些中文大模型。其中的大模型包括中文分詞模型、命名實(shí)體識(shí)別模型、依存句法分析模型等。
5、XiaoIce(小冰):XiaoIce是微軟亞洲研究院開(kāi)發(fā)的一個(gè)聊天機(jī)器人,擁有大型的對(duì)話系統(tǒng)模型。XiaoIce具備閑聊、情感交流等能力,并在中文語(yǔ)境下表現(xiàn)出很高的流暢性和語(yǔ)言理解能力。 伴隨著技術(shù)的進(jìn)步,智能客服也必將越來(lái)越“聰明”,越來(lái)越個(gè)性化,滿足更多樣的人類需求。
大模型具有更強(qiáng)的語(yǔ)言理解能力主要是因?yàn)橐韵聨讉€(gè)原因:1、更多的參數(shù)和更深的結(jié)構(gòu):大模型通常擁有更多的參數(shù)和更深的結(jié)構(gòu),能夠更好地捕捉語(yǔ)言中的復(fù)雜關(guān)系和模式。通過(guò)更深的層次和更多的參數(shù),模型可以學(xué)習(xí)到更多的抽象表示,從而能夠更好地理解復(fù)雜的句子結(jié)構(gòu)和語(yǔ)義。2、大規(guī)模預(yù)訓(xùn)練:大模型通常使用大規(guī)模的預(yù)訓(xùn)練數(shù)據(jù)進(jìn)行預(yù)訓(xùn)練,并從中學(xué)習(xí)到豐富的語(yǔ)言知識(shí)。在預(yù)訓(xùn)練階段,模型通過(guò)大量的無(wú)監(jiān)督學(xué)習(xí)任務(wù),如語(yǔ)言建模、掩碼語(yǔ)言模型等,提前學(xué)習(xí)語(yǔ)言中的各種模式和語(yǔ)言規(guī)律。這為模型提供了語(yǔ)言理解能力的基礎(chǔ)。3、上下文感知能力:大模型能夠更好地理解上下文信息。它們能夠在生成答案時(shí)考慮到前面的問(wèn)題或?qū)υ挌v史,以及周圍句子之間的關(guān)系。通過(guò)有效地利用上下文信息,大模型能夠更準(zhǔn)確地理解問(wèn)題的含義,把握到問(wèn)題的背景、目的和意圖。4、知識(shí)融合:大型預(yù)訓(xùn)練模型還可以通過(guò)整合多種信息源和知識(shí)庫(kù),融合外部知識(shí),進(jìn)一步增強(qiáng)其語(yǔ)言理解能力。通過(guò)對(duì)外部知識(shí)的引入和融合,大模型可以對(duì)特定領(lǐng)域、常識(shí)和專業(yè)知識(shí)有更好的覆蓋和理解。 所有企業(yè)的文檔可以批量上傳,無(wú)需更多的整理,直接可自動(dòng)轉(zhuǎn)化為有效的QA,供人工座席和智能客服直接調(diào)用。江蘇人工智能大模型國(guó)內(nèi)項(xiàng)目有哪些
在AI大模型智慧醫(yī)療相關(guān)領(lǐng)域,杭州音視貝科技給公司不斷提升技術(shù)能力,打造實(shí)用性的解決方案。廣東知識(shí)庫(kù)系統(tǒng)大模型怎么訓(xùn)練
大模型具有以下幾個(gè)特點(diǎn):1、更強(qiáng)的語(yǔ)言理解能力:大模型通常具有更多的參數(shù)和更深層的結(jié)構(gòu),從而具備更強(qiáng)的語(yǔ)言理解和表達(dá)能力。它們可以更好地理解復(fù)雜的句子結(jié)構(gòu)、上下文和語(yǔ)義,并生成更準(zhǔn)確、連貫的回答。2、更***的知識(shí)儲(chǔ)備:大模型通常通過(guò)在大規(guī)模的數(shù)據(jù)集上進(jìn)行訓(xùn)練,從中學(xué)習(xí)到了更***的知識(shí)儲(chǔ)備。這使得它們可以更好地回答各種類型的問(wèn)題,包括常見(jiàn)的知識(shí)性問(wèn)題、具體的領(lǐng)域問(wèn)題和復(fù)雜的推理問(wèn)題。3、更高的生成能力:大模型具有更強(qiáng)的生成能力,可以生產(chǎn)出更豐富、多樣和富有創(chuàng)造性的文本。它們可以生成長(zhǎng)篇連貫的文章、故事、代碼等,并且在生成過(guò)程中能夠考慮上下文和語(yǔ)義的一致性。4、訓(xùn)練過(guò)程更復(fù)雜、耗時(shí)更長(zhǎng):由于大模型的參數(shù)量龐大,訓(xùn)練過(guò)程更為復(fù)雜且需要更長(zhǎng)的時(shí)間。大模型通常需要使用大規(guī)模的數(shù)據(jù)集和更多的計(jì)算資源進(jìn)行訓(xùn)練,這意味著需要更多的時(shí)間、計(jì)算資源和成本才能達(dá)到比較好效果。5、訓(xùn)練過(guò)程更復(fù)雜、耗時(shí)更長(zhǎng):由于大模型的參數(shù)量龐大,訓(xùn)練過(guò)程更為復(fù)雜且需要更長(zhǎng)的時(shí)間。大模型通常需要使用大規(guī)模的數(shù)據(jù)集和更多的計(jì)算資源進(jìn)行訓(xùn)練,這意味著需要更多的時(shí)間、計(jì)算資源和成本才能達(dá)到比較好效果。 廣東知識(shí)庫(kù)系統(tǒng)大模型怎么訓(xùn)練
音視貝科技,2020-03-05正式啟動(dòng),成立了智能外呼系統(tǒng),智能客服系統(tǒng),智能質(zhì)檢系統(tǒng),呼叫中心等幾大市場(chǎng)布局,應(yīng)對(duì)行業(yè)變化,順應(yīng)市場(chǎng)趨勢(shì)發(fā)展,在創(chuàng)新中尋求突破,進(jìn)而提升音視貝的市場(chǎng)競(jìng)爭(zhēng)力,把握市場(chǎng)機(jī)遇,推動(dòng)商務(wù)服務(wù)產(chǎn)業(yè)的進(jìn)步。音視貝科技經(jīng)營(yíng)業(yè)績(jī)遍布國(guó)內(nèi)諸多地區(qū)地區(qū),業(yè)務(wù)布局涵蓋智能外呼系統(tǒng),智能客服系統(tǒng),智能質(zhì)檢系統(tǒng),呼叫中心等板塊。我們?cè)诎l(fā)展業(yè)務(wù)的同時(shí),進(jìn)一步推動(dòng)了品牌價(jià)值完善。隨著業(yè)務(wù)能力的增長(zhǎng),以及品牌價(jià)值的提升,也逐漸形成商務(wù)服務(wù)綜合一體化能力。公司坐落于浙江省杭州市西湖區(qū)申花路796號(hào)709室,業(yè)務(wù)覆蓋于全國(guó)多個(gè)省市和地區(qū)。持續(xù)多年業(yè)務(wù)創(chuàng)收,進(jìn)一步為當(dāng)?shù)亟?jīng)濟(jì)、社會(huì)協(xié)調(diào)發(fā)展做出了貢獻(xiàn)。