開發(fā)氧化石墨產(chǎn)品介紹

來源: 發(fā)布時間:2023-11-25

氧化石墨烯因獨特的結(jié)構(gòu)和性質(zhì)受到了人們的***關(guān)注,其生物相容性的研究已經(jīng)積累了一定的研究基礎(chǔ),但氧化石墨烯在實際應(yīng)用中仍然面臨很多困難和挑戰(zhàn)。首先,氧化石墨烯制備方法的多樣性和生物系統(tǒng)的復(fù)雜性,會***影響其在體內(nèi)外的生物相容性,導(dǎo)致研究結(jié)果的不一致,因此氧化石墨烯的生物相容性問題不能簡單歸納得出結(jié)論,需要綜合多方面的因素進(jìn)行深入研究。其次,氧化石墨烯的***活性又取決于時間和本身的濃度,其***機理需要進(jìn)一步的研究。***,氧化石墨烯對機體的長期毒性以及氧化石墨烯進(jìn)入細(xì)胞的機制、與細(xì)胞之間相互作用的機理、細(xì)胞/體內(nèi)代謝途徑等尚不清晰。這些問題關(guān)乎氧化石墨烯在生物醫(yī)學(xué)領(lǐng)域應(yīng)用中的安全問題和環(huán)境風(fēng)險評價,需要研究者們不斷地研究和探索。與石墨烯量子點類似,氧化石墨烯量子點也具備一些特殊的性質(zhì)。開發(fā)氧化石墨產(chǎn)品介紹

開發(fā)氧化石墨產(chǎn)品介紹,氧化石墨

GO作為新型的二維結(jié)構(gòu)的納米材料,具有疏水性中間片層與親水性邊緣結(jié)構(gòu),特殊的結(jié)構(gòu)決定其優(yōu)異的***特性。GO的***活性主要有以下幾種機制:(1)機械破壞,包括物理穿刺或者切割;(2)氧化應(yīng)激引發(fā)的細(xì)菌/膜物質(zhì)破壞;(3)包覆導(dǎo)致的跨膜運輸阻滯和(或)細(xì)菌生長阻遏;(4)磷脂分子抽提理論。GO作用于細(xì)菌膜表面的殺菌機制中,主要是GO與起始分子反應(yīng)(Molecular Initiating Events,MIEs)[51]的作用(圖7.3),包括GO表面活性引發(fā)的磷脂過氧化,GO片層結(jié)構(gòu)對細(xì)菌膜的嵌入、包裹以及磷脂分子的提取,GO表面催化引發(fā)的活性自由基等。另外,GO的尺寸在上述不同的***機制中對***的影響也是不同的,機械破壞和磷脂分子抽提理論表明尺寸越大的GO, 能表現(xiàn)出更好的***能力,而氧化應(yīng)激理論則認(rèn)為GO 尺寸越小,其***效果越好。應(yīng)該怎么做氧化石墨圖片雖然GO具有諸多特性,但是由于范德華作用力,使GO之間很容易在不同體系中發(fā)生團聚。

開發(fā)氧化石墨產(chǎn)品介紹,氧化石墨

還原氧化石墨烯(RGO)在邊緣處和面內(nèi)缺陷處具有豐富的分子結(jié)合位點,使其成為一種很有希望的電化學(xué)傳感器材料。結(jié)合原位還原技術(shù),有很多研究使用諸如噴涂、旋涂等基于溶液的技術(shù)手段,利用氧化石墨烯(GO)在不同基底上制造出具備石墨烯相關(guān)性質(zhì)的器件,以期在一些場合替代CVD制備的石墨烯。結(jié)構(gòu)決定性質(zhì)。氧化石墨烯(GO)的能級結(jié)構(gòu)由sp3雜化和sp2雜化的相對比例決定[6],調(diào)節(jié)含氧基團相對含量可以實現(xiàn)氧化石墨烯(GO)從絕緣體到半導(dǎo)體再到半金屬性質(zhì)的轉(zhuǎn)換

氧化石墨烯基納濾膜水通量遠(yuǎn)遠(yuǎn)大于傳統(tǒng)的納濾膜,但是氧化石墨烯納濾膜對鹽離子的截留率還有待提高。Gao等26利用過濾法在氧化石墨烯片層中間混合加入多壁碳納米管(MWCNTs),復(fù)合膜的通量達(dá)到113 L/(m2.h.MPa),對于鹽離子截留率提高,對于Na2SO4截留率可達(dá)到83.5%。Sun等27提出了一種全新的、精確可控的基于GO的復(fù)合滲透膜的設(shè)計思路,通過將單層二氧化鈦(TO)納米片嵌入具有溫和紫外(UV)光照還原的氧化石墨烯(GO)層壓材料中,所制備的RGO/TO雜化膜表現(xiàn)出優(yōu)異的水脫鹽性能。GO制備簡單、自身具有受還原程度調(diào)控的帶隙,可以實現(xiàn)超寬譜(從可見至太赫茲波段)探測。

開發(fā)氧化石墨產(chǎn)品介紹,氧化石墨

解決GO在不同介質(zhì)中的解理和分散等問題是實現(xiàn)GO廣泛應(yīng)用的重要前提。此外,不同的應(yīng)用體系往往要不同的功能體現(xiàn)和界面結(jié)合等特征,故而要經(jīng)常對GO表面進(jìn)行修飾改性。GO本身含有豐富的含氧官能團,也可在GO表面引入其他功能基團,或者利用GO之間和GO與其它物質(zhì)間的共價鍵或非共價鍵作用進(jìn)行化學(xué)反應(yīng)接枝其他官能團。由于GO結(jié)構(gòu)的不確定性,以上均屬于一大類復(fù)雜的GO化學(xué),導(dǎo)致采用化學(xué)方式對GO進(jìn)行修飾與改性機理復(fù)雜化,很難得到結(jié)構(gòu)單一的產(chǎn)品。盡管面臨諸多難以解釋清楚的問題,但是對GO復(fù)合材料優(yōu)異性能的期望使得非常必要總結(jié)對GO進(jìn)行修飾改性的常用方法和技術(shù),同時也是氧化石墨烯相關(guān)材料應(yīng)用能否實現(xiàn)穩(wěn)定、可控規(guī)?;瘧?yīng)用的關(guān)鍵。氧化石墨烯(GO)的光學(xué)性質(zhì)與石墨烯有著很大差別。應(yīng)該怎么做氧化石墨圖片

石墨烯具有很好的電學(xué)性質(zhì),但氧化石墨本身卻是絕緣體(或是半導(dǎo)體)。開發(fā)氧化石墨產(chǎn)品介紹

氧化石墨烯(GO)的光學(xué)性質(zhì)與石墨烯有著很大差別。石墨烯是零帶隙半導(dǎo)體,在可見光范圍內(nèi)的光吸收系數(shù)近乎常數(shù)(~2.3%);相比之下,氧化石墨烯的光吸收系數(shù)要小一個數(shù)量級(~0.3%)[9][10]。而且,氧化石墨烯的光吸收系數(shù)是波長的函數(shù),其吸收曲線峰值在可見光與紫外光交界附近,隨著波長向近紅外一端移動,吸收系數(shù)逐漸下降。對紫外光的吸收(200-320nm)會表現(xiàn)出明顯的π-π*和 n-π*躍遷,而且其強度會隨著含氧基團的出現(xiàn)而增加[11]。氧化石墨烯(GO)的光響應(yīng)對其含氧基團的數(shù)量十分敏感[12]。隨著含氧基團的去除,氧化石墨烯(GO)在可見光波段的的光吸收率迅速上升,**終達(dá)到2.3%這一石墨烯吸收率的上限。開發(fā)氧化石墨產(chǎn)品介紹