常州狀態(tài)監(jiān)測公司

來源: 發(fā)布時間:2024-03-16

設備狀態(tài)監(jiān)測及故障預警若干關(guān)鍵技術(shù)可歸納如下:(1)揭示設備運行狀態(tài)機械動態(tài)特性劣化演變規(guī)律。設備由非故障運行狀態(tài)劣化為故障運行狀態(tài),其機械動態(tài)特性通常有一個發(fā)展演變過程(2)提取設備運行狀態(tài)發(fā)展趨勢特征。在役設備往往具有復雜運行狀態(tài),在長歷程運行中工況和負載等非故障因素會造成信號能量變化,故障趨勢信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成的冗余信息,進而構(gòu)建預測模型。動力裝備全壽命周期監(jiān)測診斷方面:實現(xiàn)了支持物聯(lián)網(wǎng)的智能信息采集與管理、全生命周期動態(tài)自適應監(jiān)測、早期非線性故障特征提取。優(yōu)化重構(gòu)出綜合體現(xiàn)裝備運行工況及表現(xiàn)的新參數(shù),提高異常狀態(tài)辨識的適應性與可靠性,基于運行過程信息反映裝備劣化趨勢與故障發(fā)展規(guī)律,來提高故障早期辨識能力?;谖锫?lián)網(wǎng)和網(wǎng)絡化監(jiān)測診斷將產(chǎn)品監(jiān)測診斷與運行服務支持有機集成一體,在應用中實現(xiàn)動力裝備常見故障診斷準確率達80%以上。應用于風力大電機、空壓機等大型動力裝備的集群化診斷領(lǐng)域。提供了基于物聯(lián)網(wǎng)的動力裝備全生命周期監(jiān)測與服務支持創(chuàng)新模式,提供了其生命周期的遠程監(jiān)測診斷與維護等專業(yè)化服務。隨著技術(shù)的發(fā)展,設備狀態(tài)監(jiān)測在工業(yè)、物聯(lián)網(wǎng)等領(lǐng)域的應用越來越多。常州狀態(tài)監(jiān)測公司

常州狀態(tài)監(jiān)測公司,監(jiān)測

針對刀具磨損狀態(tài)在實際生產(chǎn)加工過程中難以在線監(jiān)測這個問題,提出一種通過通信技術(shù)獲取機床內(nèi)部數(shù)據(jù),對當前的刀具磨損狀態(tài)進行識別的方法。通過采集機床內(nèi)部實時數(shù)據(jù)并將其與實際加工情景緊密結(jié)合,能直接反映當前的加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡用于構(gòu)建刀具磨損狀態(tài)識別模型,直接將采集到數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預測模型,模型在訓練集和在線驗證試驗中的表現(xiàn)都符合預期。刀具磨損狀態(tài)識別的方法在投入使用時還有一些問題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測得的,而實際加工過程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進行變參數(shù)試驗,考慮加工參數(shù)對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景時,通過獲取當前場景,及時匹配相應的預測模型即可。②本研究中模型是一個固定的模型。今后需要根據(jù)實時的信號以及已知的磨損狀態(tài),對模型進行實時更新,從而在實時監(jiān)測過程中實現(xiàn)自學習,不斷提升模型的精度和預測效果。常州狀態(tài)監(jiān)測公司使用絕緣監(jiān)測設備來檢測電機繞組和絕緣系統(tǒng)的健康狀況。絕緣降低可能導致繞組短路或絕緣擊穿。

常州狀態(tài)監(jiān)測公司,監(jiān)測

電機等振動設備在運行中,伴隨著一些安全問題,振動數(shù)據(jù)會發(fā)生變化,如果不及時發(fā)現(xiàn),容易導致起火或,造成大量的財產(chǎn)損失,而這些問題具有突發(fā)性和不準確性,難以預知,應對這種情況,需要一種手段去解決。無線振動傳感器直接讀取原始加速度數(shù)據(jù),準確可靠,避免后期計算出現(xiàn)較大誤差。本傳感器采用無線通訊方式,低功耗設計,一次性鋰亞電池供電,具有容量大、耐高溫、不宜爆等特點。工作原理:將傳感器分布式安裝在各類電機、風機、振動平臺、回轉(zhuǎn)窯、傳送設備等需要振動監(jiān)測的設備上實時采集振動數(shù)據(jù),然后通過無線方式將數(shù)據(jù)發(fā)送給采集端,采集端將數(shù)據(jù)解析、顯示或傳輸。系統(tǒng)能實時在線監(jiān)測出設備異常,發(fā)出預警,避免事故發(fā)生。產(chǎn)品特點是(1)實時性:系統(tǒng)實時在線監(jiān)測電機等振動參數(shù),避免了由于電機突然缺相、線圈故障,堵轉(zhuǎn)、固定螺栓松動、負載過高和人為錯誤操作等發(fā)生的事故。(2)便捷性:系統(tǒng)采用無線傳輸方式,傳感器的安裝,解決了以往因為空間狹小、不能布線、安裝成本高等問題。(3)可靠性:系統(tǒng)采用先進成熟的傳感技術(shù)和無線傳輸技術(shù),抗干擾力強,傳輸距離遠,讀數(shù)準確,可靠性高。

刀具監(jiān)測技術(shù)主要可以分為兩大類:直接監(jiān)測方法和間接監(jiān)測方法。直接監(jiān)測方法通常是通過使用光學或觸覺傳感器直接觀察刀具的磨損情況。這種方法精度高,但必須進行停機檢測,時間成本較高,因此不適用于工業(yè)生產(chǎn)。間接監(jiān)測方法則是通過監(jiān)測與刀具磨損或破損密切相關(guān)的傳感器信號,如振動、切削力、電流功率和聲發(fā)射等,并利用建立的數(shù)學模型間接獲得刀具磨損量或刀具破損狀態(tài)。這種方法可以在機床加工過程中持續(xù)進行,不影響加工進度,因此更適用于在線監(jiān)測。其中,基于振動的監(jiān)測法是一種常用的間接監(jiān)測方法。切削過程中,振動信號包含豐富的與刀具狀態(tài)密切相關(guān)的信息。通過測量和分析振動信號,可以有效地監(jiān)測刀具的磨損和破損情況。此外,切削力監(jiān)測法也是一種常用的間接監(jiān)測方法。加工過程中,切削力會隨著刀具狀態(tài)的變化而改變,因此通過監(jiān)測切削力的變化也可以有效地判斷刀具的狀態(tài)??偟膩碚f,刀具監(jiān)測技術(shù)對于確保加工質(zhì)量和提高生產(chǎn)效率具有重要意義。在實際應用中,應根據(jù)具體的加工需求和條件選擇合適的監(jiān)測方法和技術(shù)。部署和維護電機監(jiān)測系統(tǒng)可能需要昂貴的設備和專業(yè)知識,這可能對一些小型或預算有限的應用造成挑戰(zhàn)。

常州狀態(tài)監(jiān)測公司,監(jiān)測

故障預測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術(shù)搭建模型算法,實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。故障預測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術(shù)搭建模型算法,實現(xiàn)產(chǎn)品和裝備狀態(tài)監(jiān)測、故障診斷及壽命預測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。近年來我們提出的標準化平方包絡和數(shù)學框架以及準算數(shù)均值比數(shù)學框架指引了稀疏測度構(gòu)造的新方向,同時發(fā)現(xiàn)了大量基尼指數(shù)、峭度、香農(nóng)熵等具有等價性能的稀疏測度。基于標準化平方包絡和數(shù)學框架以及凸優(yōu)化技術(shù),提出了在線更新模型權(quán)重可解釋的機器學習算法,可以利用模型權(quán)重來實時確認故障特征頻率,解決了狀態(tài)監(jiān)測與故障診斷領(lǐng)域傳統(tǒng)機器學習只能輸出狀態(tài),而無法提供故障特征來確認輸出狀態(tài)的難題。不同類型的電機在結(jié)構(gòu)和工作原理上可能有很大差異,監(jiān)測系統(tǒng)需要根據(jù)具體電機的特性進行定制。溫州狀態(tài)監(jiān)測技術(shù)

通過監(jiān)測電機振動的頻率和振幅,可以評估電機軸承和其他旋轉(zhuǎn)部件的狀況。常州狀態(tài)監(jiān)測公司

作為工業(yè)領(lǐng)域的一種關(guān)鍵旋轉(zhuǎn)設備,對于終端用來說,關(guān)于電機維護的主要是電氣班組的設備工程師、電機維護工程師、電機檢修人員等;對于電機廠家以及電機經(jīng)銷商來說,主要是電機售后服務工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產(chǎn)品號稱可以實現(xiàn)電機的預測性維護,但問題也非常多。1)傳感器安裝難。設備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護成本高昂。2)技術(shù)成本高。工業(yè)場景設備類型多,運行工況復雜,預測性維護算法涉及數(shù)據(jù)預處理、工業(yè)機理、機器學習,技術(shù)要求很高。3)時間成本高。預測性維護要實現(xiàn),前期需要大量歷史數(shù)據(jù)的支撐,數(shù)據(jù)采集、歸納、分析是一個漫長的過程。以電機預測性維護的理念為原型的電機智能運維,雖然被各大宣傳媒體提得很多,但還遠遠未到落地很好乃至普及的程度,不論是預測性維護的預測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機維護人員的電機運維來說,都還有很遠的一段距離!常州狀態(tài)監(jiān)測公司