研發(fā)監(jiān)測數(shù)據(jù)

來源: 發(fā)布時間:2024-01-19

通過對電機部分放電、振動、電流特征分析、磁通量和磁芯完整性的在線監(jiān)測和離線檢測,為電機轉子和定子繞組的狀態(tài)維修提供信息。通過監(jiān)測電機的電流、電壓信號,在自身內(nèi)部建立數(shù)學模型,對被監(jiān)電機進行自我學習,完成學習后開始進行監(jiān)測。通過將測量電流與數(shù)學模型計算所得電流進行差分比較,得到一組數(shù)值,再將該數(shù)值通過傅里葉分析,得到一個功率譜密度圖。功率頻譜圖中,各頻率段的突加分量不同的故障類型,給出報告,告知維修團隊應該在接下來多久時間內(nèi)需對該故障進行處理。維修團隊根據(jù)報告,按實際情況采購備件、排產(chǎn)、計劃停機維修,比較低限度的減少了設備停機時間,降低了非計劃性停機帶來的損失。監(jiān)測結果的準確性對于決策的制定至關重要。研發(fā)監(jiān)測數(shù)據(jù)

研發(fā)監(jiān)測數(shù)據(jù),監(jiān)測

預測性維護對制造業(yè)在節(jié)省成本損耗、提升企業(yè)的生產(chǎn)效率和產(chǎn)業(yè)智能化升級具有非常重要的意義。國內(nèi)工業(yè)現(xiàn)場的存量設備數(shù)目相當可觀,絕大多數(shù)還沒采用有效的預測性維護方案,尤其是大型旋轉類設備,一般都是主要生產(chǎn)運行設備而且故障率相對較高,需要重點監(jiān)控和維護。通過振動分析和診治對旋轉類設備進行預防性維護無疑向我們展示了一個極具發(fā)展?jié)摿Φ氖袌?。預測性維護在不久的未來將愈加凸顯工業(yè)物聯(lián)網(wǎng)中關鍵的應用優(yōu)勢,市場規(guī)模及需求將快速增長工業(yè)設備的預測性維護的市場需求顯而易見。但是預防性維護想要產(chǎn)生業(yè)務價值、真正大規(guī)模發(fā)展卻是遇到了兩個難題。首先項目實施成本過高,硬件設備大多依賴進口。比如數(shù)采傳感器、設備等。這導致很多企業(yè)在考慮投入產(chǎn)出比時比較猶豫。其次是技術需要突破,目前大多數(shù)供應商只實現(xiàn)了設備狀態(tài)的監(jiān)視,真正能實現(xiàn)故障準確預測的落地案例寥寥無幾。供應商技術和能力還需要不斷升級。預防性維護要想實現(xiàn)更好的應用,要在以下方面實現(xiàn)突破。實現(xiàn)基于預測的維護,提升故障診斷及預測的準確率提高軟硬件產(chǎn)品國產(chǎn)化率,降低實施成本。杭州產(chǎn)品質(zhì)量監(jiān)測臺工業(yè)廢水的監(jiān)測檢測可以幫助企業(yè)了解水質(zhì)狀況,及時采取措施進行治理,保護水資源。

研發(fā)監(jiān)測數(shù)據(jù),監(jiān)測

傳統(tǒng)方法通常無法自適應提取特征, 同時需要一定的離線數(shù)據(jù)訓練得到檢測模型, 但目標對象在線場景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓練數(shù)據(jù)的分布可能因隨機噪聲、變工況等原因而存在差異, 導致離線訓練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測結果的準確性; 其次, 上述方法通常采用基于異常點的檢測算法, 未充分考慮樣本前后的時序關系, 容易因數(shù)據(jù)微小波動而產(chǎn)生誤報警, 降低檢測結果的魯棒性; 再次, 為降低誤報警, 這類方法需要反復調(diào)整報警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機理模型, 可獲得理想的診斷和檢測結果, 但這類方法通常需要提前知道系統(tǒng)運動方程等信息, 對于軸承運行來說, 這類信息通常不易獲知. 近年來, 深度神經(jīng)網(wǎng)絡已被成功應用于早期故障特征自動提取和識別, 可自適應地提取信息豐富和判別能力強的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量輔助數(shù)據(jù)進行模型訓練, 而歷史采集的輔助數(shù)據(jù)與目標對象數(shù)據(jù)可能存在較大不同, 直接訓練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓練過程中未能針對早期故障引發(fā)的狀態(tài)變化而有目的地強化相應特征表示. 因此, 深度學習方法在早期故障在線監(jiān)測中的應用仍存在較大的提升空間.

針對傳統(tǒng)方法通常無法自適應提取特征, 同時需要一定的離線數(shù)據(jù)訓練得到檢測模型, 但目標對象在線場景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓練數(shù)據(jù)的分布可能因隨機噪聲、變工況等原因而存在差異, 導致離線訓練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測結果的準確性; 其次, 上述方法通常采用基于異常點的檢測算法, 未充分考慮樣本前后的時序關系, 容易因數(shù)據(jù)微小波動而產(chǎn)生誤報警, 降低檢測結果的魯棒性; 再次, 為降低誤報警, 這類方法需要反復調(diào)整報警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機理模型, 可獲得理想的診斷和檢測結果, 但這類方法通常需要提前知道系統(tǒng)運動方程等信息, 對于軸承運行來說, 這類信息通常不易獲知. 近年來, 深度神經(jīng)網(wǎng)絡已被成功應用于早期故障特征的自動提取和識別, 可自適應地提取信息豐富和判別能力強的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量輔助數(shù)據(jù)進行模型訓練, 而歷史采集的輔助數(shù)據(jù)與目標對象數(shù)據(jù)可能存在較大不同, 直接訓練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓練過程中未能針對早期故障引發(fā)的狀態(tài)變化而有目的地強化相應特征表示. 因此, 深度學習方法在早期故障在線監(jiān)測中的應用仍存在較大的提升空間.工業(yè)監(jiān)測系統(tǒng)可以預測設備的故障并提前進行維修。

研發(fā)監(jiān)測數(shù)據(jù),監(jiān)測

設備狀態(tài)監(jiān)測和故障診斷技術是設備維護手段之一。設備的故障監(jiān)測診斷技術,就是利用科學的檢測方法和現(xiàn)代化技術手段,對設備目前的運行狀態(tài)進行監(jiān)測和排查,從而判斷出設備運行狀態(tài)的可靠性,確認其局部或整機是否正常運行。煤礦用機電設備溫度振動監(jiān)測系統(tǒng)用于煤礦主扇、壓風機、鋼絲繩牽引帶式輸送機、滾筒帶式輸送機、排水泵和電動機、提升機等,有助于掌握設備運行工況中的溫度振動數(shù)據(jù)。提升機、鋼絲繩牽引、滾筒帶式輸送機、皮帶機、空壓機、壓風機、水泵等煤礦機電設備要求增加電動機及主要軸承溫度和振動監(jiān)測。裝置功能:1、提升機、水泵、皮帶機等設備電動機主軸承溫度振動在線監(jiān)測2、礦用高壓異步電動機軸承溫度振動檢測診斷3、提升機、水泵、皮帶機等設備滾筒主軸承溫度振動在線監(jiān)測4、井下大型機電設備電動機及主要軸承溫度振動在線監(jiān)測5、可以同時收集電機前后軸承溫度及電機振動量的數(shù)值,對收到的信息分析處理6、系統(tǒng)提供網(wǎng)絡接口,可直接與智能礦山網(wǎng)絡相連,也可與其它網(wǎng)絡內(nèi)的系統(tǒng)連接;7、在線系統(tǒng)軟件可實時監(jiān)測任意通道頻譜,時域波形、趨勢、三維譜圖和坐標圖,還可通過互聯(lián)網(wǎng)進行遠程監(jiān)測。監(jiān)測結果的反饋可以幫助我們改進產(chǎn)品的設計和功能。上海電力監(jiān)測控制策略

監(jiān)測結果的分析可以幫助我們了解產(chǎn)品的優(yōu)勢和不足之處。研發(fā)監(jiān)測數(shù)據(jù)

為了避免發(fā)生災難性電機故障的可能性,業(yè)界產(chǎn)生對開始退化的感應電機組件進行了早期狀態(tài)監(jiān)測和故障診斷的需求。狀態(tài)監(jiān)測可在其整個使用壽命期間對感應電機的各種部件進行持續(xù)評估。感應電機故障的早期診斷,對即將發(fā)生的故障提供足夠的警告,為企業(yè)提供基于狀態(tài)的維護和短暫停機的時間建議。電機故障監(jiān)測系統(tǒng),電機狀態(tài)檢測儀。電機故障監(jiān)測系統(tǒng)是采用現(xiàn)代電子技術和傳感器技術,對電動機運行過程中的各種參數(shù)進行實時在線檢測、分析、處理并作出相應報警或指示的裝置。其基本功能包括:1、對電動機的絕緣電阻、溫升等常規(guī)電氣參數(shù)和振動、噪聲等機械量進行測量;2、通過設定值比較法確定電機的實際工況;3、根據(jù)設定的報警閾值或動作時間發(fā)出聲光報警信號;4、通過通訊接口與plc或其它自動化設備相連實現(xiàn)遠程控制。研發(fā)監(jiān)測數(shù)據(jù)