電機(jī)健康狀態(tài)監(jiān)測(cè)是一種通過對(duì)電機(jī)運(yùn)行狀態(tài)進(jìn)行實(shí)時(shí)監(jiān)測(cè),判斷其是否處于正常工作狀態(tài)的方法。通過電機(jī)健康狀態(tài)監(jiān)測(cè),可以及時(shí)發(fā)現(xiàn)并處理電機(jī)潛在的故障,防止設(shè)備損壞,提高設(shè)備穩(wěn)定性和可靠性。電機(jī)健康狀態(tài)監(jiān)測(cè)的方法包括以下幾種:振動(dòng)監(jiān)測(cè):通過振動(dòng)傳感器安裝在電機(jī)上,實(shí)時(shí)監(jiān)測(cè)電機(jī)的振動(dòng)情況。當(dāng)振動(dòng)超過正常范圍時(shí),可以發(fā)出警報(bào)并停機(jī),以防止設(shè)備損壞。溫度監(jiān)測(cè):通過溫度傳感器監(jiān)測(cè)電機(jī)內(nèi)部和外部的溫度變化。當(dāng)發(fā)現(xiàn)異常的溫度升高時(shí),可能表明電機(jī)存在故障。電流監(jiān)測(cè):通過電流傳感器監(jiān)測(cè)電機(jī)的電流變化,可以檢測(cè)電機(jī)是否存在負(fù)載過重、不平衡等問題,及時(shí)采取措施。聲音監(jiān)測(cè):通過麥克風(fēng)或聲音傳感器監(jiān)測(cè)電機(jī)的聲音,可以判斷電機(jī)是否存在異響和雜音等異常情況,及時(shí)排除問題。為了提高電機(jī)的健康狀態(tài)監(jiān)測(cè)效果,可以將上述方法結(jié)合使用,形成一個(gè)完整的電機(jī)健康監(jiān)測(cè)系統(tǒng)。同時(shí),對(duì)于不同的電機(jī)類型和運(yùn)行環(huán)境,還需要根據(jù)實(shí)際情況選擇合適的監(jiān)測(cè)方法和參數(shù)??傊姍C(jī)健康狀態(tài)監(jiān)測(cè)是保障電機(jī)正常運(yùn)行的重要手段之一。通過實(shí)時(shí)監(jiān)測(cè)電機(jī)的運(yùn)行狀態(tài),可以及時(shí)發(fā)現(xiàn)并處理潛在的故障,提高設(shè)備的穩(wěn)定性和可靠性,延長電機(jī)的使用壽命。工業(yè)噪聲的監(jiān)測(cè)檢測(cè)可以減少對(duì)工人聽力的損害,提高工作效率和生活質(zhì)量。無錫仿真監(jiān)測(cè)公司
基于人工神經(jīng)網(wǎng)絡(luò)的診斷方法簡單處理單元連接而成的復(fù)雜的非線性系統(tǒng),具有學(xué)習(xí)能力,自適應(yīng)能力,非線性逼近能力等。故障診斷的任務(wù)從映射角度看就是從征兆到故障類型的映射。用ANN技術(shù)處理故障診斷問題,不僅能進(jìn)行復(fù)雜故障診斷模式的識(shí)別,還能進(jìn)行故障嚴(yán)重性評(píng)估和故障預(yù)測(cè),由于ANN能自動(dòng)獲取診斷知識(shí),使診斷系統(tǒng)具有自適應(yīng)能力?;诩尚椭悄芟到y(tǒng)的診斷方法隨著電機(jī)設(shè)備系統(tǒng)越來越復(fù)雜,依靠單一的故障診斷技術(shù)已難滿足復(fù)雜電機(jī)設(shè)備的故障診斷要求,因此上述各種診斷技術(shù)集成起來形成的集成智能診斷系統(tǒng)成為當(dāng)前電機(jī)設(shè)備故障診斷研究的熱點(diǎn)。主要的集成技術(shù)有:基于規(guī)則的系統(tǒng)與ANN結(jié)合,模糊邏輯與ANN的結(jié)合,混沌理論與ANN的結(jié)合,模糊神經(jīng)網(wǎng)絡(luò)與系統(tǒng)的結(jié)合。寧波旋轉(zhuǎn)機(jī)械監(jiān)測(cè)系統(tǒng)工業(yè)監(jiān)測(cè)檢測(cè)是現(xiàn)代工業(yè)中不可或缺的環(huán)節(jié),通過實(shí)時(shí)監(jiān)測(cè),可以及時(shí)發(fā)現(xiàn)生產(chǎn)過程中的問題并采取相應(yīng)的措施。
電機(jī)狀態(tài)監(jiān)測(cè)和振動(dòng)分析提供加速度計(jì)選擇的建議?;谥绷骱头峭浇涣麟姍C(jī)的常見故障。這些常見故障可通過振動(dòng)分析檢測(cè)出來,包括機(jī)械和電氣故障。重點(diǎn)是傳感器的頻率范圍及其安裝方法,以便可靠地檢測(cè)這些故障。例如,考慮以幾百赫茲的周期性頻率(稱為故障頻率)發(fā)生的撞擊事件,但每個(gè)事件的能量可從起始點(diǎn)帶走,頻率在低至千赫范圍內(nèi)。因此,用于檢測(cè)撞擊、摩擦和凹槽等事件的傳感器應(yīng)在幾百赫茲到20千赫的寬頻范圍內(nèi)響應(yīng)。對(duì)于傳統(tǒng)的機(jī)械故障,如平衡和對(duì)準(zhǔn),頻率范圍從約0.2倍的運(yùn)行速度到50-60倍的運(yùn)行速度是足夠的。電氣故障需要機(jī)械故障所需的低頻和高頻段。電機(jī)會(huì)同時(shí)出現(xiàn)機(jī)械和電氣故障,這會(huì)導(dǎo)致振動(dòng)。只要安裝的振動(dòng)傳感器具有足夠的帶寬和靈敏度,就可以檢測(cè)到這些故障。機(jī)械故障伴隨著沖擊、摩擦和疲勞,會(huì)產(chǎn)生比電氣故障頻率更劇烈的振動(dòng),但凹槽除外。凹槽產(chǎn)生的振動(dòng)頻率與摩擦頻率大致相同。如果傳感器的帶寬和安裝方法足以檢測(cè)機(jī)械故障,那么它們也將檢測(cè)電氣故障。
汽車傳動(dòng)系統(tǒng)疲勞驗(yàn)證通常采用模擬實(shí)際使用條件的方法,包括以下步驟:試驗(yàn)樣本準(zhǔn)備:選擇一定數(shù)量的變速器樣本,確保它們生產(chǎn)批次的典型特征。樣本應(yīng)該經(jīng)過嚴(yán)格的質(zhì)量檢查,以排除制造缺陷。設(shè)定試驗(yàn)條件:根據(jù)變速器的設(shè)計(jì)和使用條件,制定試驗(yàn)計(jì)劃,包括轉(zhuǎn)速、負(fù)載、溫度、濕度等參數(shù)。試驗(yàn)條件應(yīng)盡量接近實(shí)際使用條件。進(jìn)行試驗(yàn):將試驗(yàn)樣本安裝在試驗(yàn)臺(tái)或?qū)嶒?yàn)車輛上,按照設(shè)定的條件進(jìn)行長時(shí)間運(yùn)行。期間監(jiān)測(cè)變速器的性能和損傷情況。數(shù)據(jù)分析:收集試驗(yàn)數(shù)據(jù),包括振動(dòng)、溫度、壓力等參數(shù),對(duì)數(shù)據(jù)進(jìn)行分析,評(píng)估變速器的性能和壽命。壽命預(yù)測(cè):基于試驗(yàn)數(shù)據(jù)和相關(guān)理論,預(yù)測(cè)變速器的疲勞壽命,確定在何種條件下需要維修或更換變速器。結(jié)果報(bào)告:將試驗(yàn)結(jié)果整理成報(bào)告,包括變速器的疲勞壽命、性能評(píng)估、建議的維修和保養(yǎng)計(jì)劃等信息。
智能監(jiān)診系統(tǒng)是一種測(cè)量系統(tǒng),用于在動(dòng)態(tài)條件下對(duì)汽車傳動(dòng)系統(tǒng)(如變速箱,車橋,傳動(dòng)軸以及發(fā)動(dòng)機(jī))進(jìn)行早期損壞檢測(cè)。通過將當(dāng)前的振動(dòng)指標(biāo)與先前“學(xué)習(xí)階段”參考值進(jìn)行比較,它可以探測(cè)出傳動(dòng)系統(tǒng)內(nèi)部部件的相關(guān)變化。該系統(tǒng)將幫助產(chǎn)品開發(fā)工程師在傳動(dòng)系統(tǒng)內(nèi)部部件失效之前檢測(cè)出“原始”缺陷。 工業(yè)監(jiān)測(cè)系統(tǒng)可以預(yù)測(cè)設(shè)備的故障并提前進(jìn)行維修。
傳統(tǒng)方法通常無法自適應(yīng)提取特征, 同時(shí)需要一定的離線數(shù)據(jù)訓(xùn)練得到檢測(cè)模型, 但目標(biāo)對(duì)象在線場(chǎng)景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機(jī)噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測(cè)結(jié)果的準(zhǔn)確性; 其次, 上述方法通常采用基于異常點(diǎn)的檢測(cè)算法, 未充分考慮樣本前后的時(shí)序關(guān)系, 容易因數(shù)據(jù)微小波動(dòng)而產(chǎn)生誤報(bào)警, 降低檢測(cè)結(jié)果的魯棒性; 再次, 為降低誤報(bào)警, 這類方法需要反復(fù)調(diào)整報(bào)警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機(jī)理模型, 可獲得理想的診斷和檢測(cè)結(jié)果, 但這類方法通常需要提前知道系統(tǒng)運(yùn)動(dòng)方程等信息, 對(duì)于軸承運(yùn)行來說, 這類信息通常不易獲知. 近年來, 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征自動(dòng)提取和識(shí)別, 可自適應(yīng)地提取信息豐富和判別能力強(qiáng)的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量輔助數(shù)據(jù)進(jìn)行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標(biāo)對(duì)象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測(cè)的特征表示效果; 另一方面, 在訓(xùn)練過程中未能針對(duì)早期故障引發(fā)的狀態(tài)變化而有目的地強(qiáng)化相應(yīng)特征表示. 因此, 深度學(xué)習(xí)方法在早期故障在線監(jiān)測(cè)中的應(yīng)用仍存在較大的提升空間.在制造業(yè)領(lǐng)域,機(jī)器設(shè)備的運(yùn)行狀態(tài)需要進(jìn)行監(jiān)測(cè)檢測(cè),以確保其正常運(yùn)行和延長使用壽命。杭州減振監(jiān)測(cè)應(yīng)用
監(jiān)測(cè)工作需要關(guān)注新產(chǎn)品的研發(fā)和上市情況,以了解市場(chǎng)的反應(yīng)和需求。無錫仿真監(jiān)測(cè)公司
通過故障機(jī)理分析可知,交流電機(jī)運(yùn)行過程中,其故障與否必然表現(xiàn)為一些特征參量的變化,根據(jù)診斷需要,選擇有代表性的特征參量為該設(shè)備在線監(jiān)測(cè)的被測(cè)信號(hào),準(zhǔn)確地提取這些故障特征量,這是故障診斷的關(guān)鍵。故障特征量,特別是反映早期故障征兆的信號(hào)往往比較弱,而相應(yīng)的背景噪聲比較弱,常規(guī)的監(jiān)測(cè)方法,因受傳感器的準(zhǔn)確性、微處理器的速度、A/D轉(zhuǎn)換的分辨率與轉(zhuǎn)換速度等硬件條件的限制,以及一般的數(shù)據(jù)處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測(cè)量手段與信號(hào)處理方法。例如小波變換原理的應(yīng)用。電機(jī)故障的現(xiàn)代分析方法:基于信號(hào)變換的診斷方法電機(jī)設(shè)備的許多故障信息是以調(diào)制的形式存在于所監(jiān)測(cè)的電氣信號(hào)及振動(dòng)信號(hào)之中,如果借助于某種變換對(duì)這些信號(hào)進(jìn)行解調(diào)處理,就能方便地獲得故障特征信息,以確定電機(jī)設(shè)備所發(fā)生的故障類型。常用的信號(hào)變換方法有希爾伯特變換和小波變換等。無錫仿真監(jiān)測(cè)公司