從整體網(wǎng)絡(luò)架構(gòu)來看,智能振動噪聲監(jiān)診子系統(tǒng)利用安裝在設(shè)備上的傳感器節(jié)點獲取設(shè)備的健康狀態(tài)監(jiān)測信號和運行參數(shù)數(shù)據(jù),經(jīng)網(wǎng)絡(luò)層集中上傳至設(shè)備健康監(jiān)測物聯(lián)網(wǎng)綜合管理平臺,實現(xiàn)數(shù)據(jù)傳輸。應(yīng)用層實現(xiàn)監(jiān)測信號的分析?故障特征提取?故障診斷及預測功能,實現(xiàn)智能化管理?應(yīng)用和服務(wù)。設(shè)備健康監(jiān)測物聯(lián)網(wǎng)綜合管理平臺具有強大的數(shù)據(jù)采集分析處理?數(shù)據(jù)可視?設(shè)備運維?故障診斷?故障報警等功能。通過實時監(jiān)測查看?統(tǒng)計?追溯,實現(xiàn)對其管轄設(shè)備的實時監(jiān)測和運行維護,基于運行信息和檢修信息?自動生成設(shè)備管理報表,實現(xiàn)設(shè)備可靠性?故障數(shù)據(jù)?更換備件等信息統(tǒng)計,為維修方案提供依據(jù)。智能電機監(jiān)測系統(tǒng)選擇傳感器采集旋轉(zhuǎn)設(shè)備的溫度、振動數(shù)據(jù),分析變化趨勢以判斷設(shè)備情況。杭州動力設(shè)備監(jiān)測系統(tǒng)
現(xiàn)代電力系統(tǒng)中發(fā)電機的單機容量越大型發(fā)電機在電力生產(chǎn)中處于主力位置,同時大型發(fā)電機造價昂貴,結(jié)構(gòu)復雜,一旦遭受損壞,需要的檢修期長,因此要求有極高的運行可靠性。就我國今后很長一段時間內(nèi)的缺電、用電緊張的狀況而言,發(fā)電機的年運行小時數(shù)目和滿負荷率都較以往高出很多,備用容量很少的情況下,其運行可靠性顯得尤為重要和突出。因此對大型機組進行在線監(jiān)測與診斷,做到早期預警以防止事故的發(fā)生或擴大具有重要的現(xiàn)實意義。通常對發(fā)電機的“監(jiān)測”與“診斷”在內(nèi)容上并無明確的劃分界限,可以說監(jiān)測的數(shù)據(jù)和結(jié)果即為診斷的依據(jù)。監(jiān)測利用各種傳感器在電機運行時對電機的狀態(tài)提取相關(guān)數(shù)據(jù)。故障診斷使用計算機及其相應(yīng)智能軟件,根據(jù)傳感器提供的信息,對故障進行分類、定位,確定故障的嚴重程度并提出處理意見。因此狀態(tài)監(jiān)測和故障診斷是一項工作的兩個部分,前者是后者的基礎(chǔ),后者是前者的分析與綜合。電機狀態(tài)監(jiān)測技術(shù)可幫助運行維護人員擺脫被動檢修和不太理想的定期檢修的困境,按照設(shè)備內(nèi)部實際的運行狀況,合理的安排檢修工作,實現(xiàn)所謂“預知”維修。這樣既可避免由于設(shè)備突然損壞,停止運行帶來的損失,又可充分發(fā)揮設(shè)備的作用。上海減振監(jiān)測技術(shù)故障診斷可以根據(jù)狀態(tài)監(jiān)測系統(tǒng)提供信息來查明失調(diào)的原因或性質(zhì),判斷劣化發(fā)生部位,以及預測狀態(tài)發(fā)展趨勢。
故障預測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術(shù)搭建模型算法,實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性、可靠性。故障預測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術(shù)搭建模型算法,實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。近年來我們提出的標準化平方包絡(luò)和數(shù)學框架以及準算數(shù)均值比數(shù)學框架指引了稀疏測度構(gòu)造的新方向,同時發(fā)現(xiàn)了大量與基尼指數(shù)、峭度、香農(nóng)熵等具有等價性能的稀疏測度?;跇藴驶椒桨j(luò)和數(shù)學框架以及凸優(yōu)化技術(shù),提出了在線更新模型權(quán)重可解釋的機器學習算法,可以利用模型權(quán)重來實時確認故障特征頻率,解決了狀態(tài)監(jiān)測與故障診斷領(lǐng)域傳統(tǒng)機器學習只能輸出狀態(tài),而無法提供故障特征來確認輸出狀態(tài)的難題。
柴油機狀態(tài)監(jiān)測與故障診斷系統(tǒng)是一個集數(shù)據(jù)采集與分析、狀態(tài)監(jiān)測、故障診斷為一體的多任務(wù)處理系統(tǒng),可實現(xiàn)柴油機監(jiān)測、保護、分析、診斷等功能。包括數(shù)據(jù)采集與工況監(jiān)測、活塞缸套磨損監(jiān)測分析、主軸承磨損狀態(tài)監(jiān)測分析、氣閥間隙異常監(jiān)測分析和瞬時轉(zhuǎn)速監(jiān)測分析等各種功能。信號分析、特征提取及診斷原理是每個監(jiān)測診斷子功能部分,各子功能都有相應(yīng)的信號分析與特征提取方法,包括信號預處理、時域、頻域分析、小波分析等,自動形成反映柴油機運行狀態(tài)的特征量,為系統(tǒng)的診斷推理提供信息來源。采用模糊聚類理論來檢驗特征參量的有效性、建立故障標準征兆群,并運用模糊貼近度來實施故障類型的診斷識別?;谌斯ど窠?jīng)網(wǎng)絡(luò)的診斷方法簡單處理單元連接而成的復雜的非線性系統(tǒng),具有學習能力,自適應(yīng)能力,非線性逼近能力等。故障診斷的任務(wù)從映射角度看就是從征兆到故障類型的映射。用ANN技術(shù)處理故障診斷問題,不僅能進行復雜故障診斷模式的識別,還能進行故障嚴重性評估和故障預測,由于ANN能自動獲取診斷知識,使診斷系統(tǒng)具有自適應(yīng)能力。盈蓓德科技開發(fā)的智能監(jiān)測系統(tǒng)實現(xiàn)了對電動機(馬達)、減速機等旋轉(zhuǎn)設(shè)備關(guān)鍵參數(shù)監(jiān)測、掌握設(shè)備運行狀態(tài)。
電機狀態(tài)監(jiān)測故障診斷技術(shù)是一種了解和掌握電機在使用過程中的狀態(tài),確定其整體或局部正常或異常,早期發(fā)現(xiàn)故障及其原因,并能預報故障發(fā)展趨勢的技術(shù),電機狀態(tài)監(jiān)測與故障診斷技術(shù)包括識別電機狀態(tài)監(jiān)測和預測發(fā)展趨勢兩方面。設(shè)備狀態(tài)是指設(shè)備運行的工況,由設(shè)備運行過程中的各種性能參數(shù)以及設(shè)備運行過程中產(chǎn)生的二次效應(yīng)參數(shù)和產(chǎn)品質(zhì)量指標參數(shù)來描述。設(shè)備狀態(tài)的類型包括:正常、異常和故障三種。設(shè)備狀態(tài)監(jiān)測是通過測定以上參數(shù),并進行分析處理,根據(jù)分析處理結(jié)果判定設(shè)備狀態(tài)。對設(shè)備進行定期或連續(xù)監(jiān)測,包括采用各種測試、分析判別方法,結(jié)合設(shè)備的歷史狀況和運行條件,弄清設(shè)備的客觀狀態(tài),獲取設(shè)備性能發(fā)展的趨勢規(guī)律,為設(shè)備的性能評價、合理使用、安全運行、故障診斷及設(shè)備自動控制打下基礎(chǔ)。盈蓓德科技可以搭建造價低廉,性能穩(wěn)定,安裝方便,使用簡單,維護工作量少的旋轉(zhuǎn)類設(shè)備振動監(jiān)測系統(tǒng)。NVH監(jiān)測應(yīng)用
基于人工智能算法的新型的電機故障預測系統(tǒng),適用范圍廣,能在更多的工業(yè)場合應(yīng)用。杭州動力設(shè)備監(jiān)測系統(tǒng)
作為工業(yè)領(lǐng)域的一種關(guān)鍵旋轉(zhuǎn)設(shè)備,對于終端用來說,關(guān)于電機維護的主要是電氣班組的設(shè)備工程師、電機維護工程師、電機檢修人員等;對于電機廠家以及電機經(jīng)銷商來說,主要是電機售后服務(wù)工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產(chǎn)品號稱可以實現(xiàn)電機的預測性維護,但問題也非常多。1)傳感器安裝難。設(shè)備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護成本高昂。2)技術(shù)成本高。工業(yè)場景設(shè)備類型多,運行工況復雜,預測性維護算法涉及數(shù)據(jù)預處理、工業(yè)機理、機器學習,技術(shù)要求很高。3)時間成本高。預測性維護要實現(xiàn),前期需要大量歷史數(shù)據(jù)的支撐,數(shù)據(jù)采集、歸納、分析是一個漫長的過程。電機智能運維,雖然被各大宣傳媒體提得很多,但還遠遠未到落地很好乃至普及的程度,不論是預測性維護的預測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機運維來說,都還有很遠的一段距離!杭州動力設(shè)備監(jiān)測系統(tǒng)