湖南微納米Nanoscribe微流道

來(lái)源: 發(fā)布時(shí)間:2023-09-15

Quantum X shape是Nanoscribe推出的全新高精度3D打印系統(tǒng),用于快速原型制作和晶圓級(jí)批量生產(chǎn),以充分挖掘3D微納加工在科研和工業(yè)生產(chǎn)領(lǐng)域的潛力。該系統(tǒng)是基于雙光子聚合技術(shù)(2PP)的專業(yè)激光直寫系統(tǒng),可為亞微米精度的2.5D和3D物體的微納加工提供極高的設(shè)計(jì)自由度。Quantum X shape可實(shí)現(xiàn)在6英寸的晶圓片上進(jìn)行高精度3D微納加工。這種效率的提升對(duì)于晶圓級(jí)批量生產(chǎn)尤其重要,這對(duì)于科研和工業(yè)生產(chǎn)領(lǐng)域應(yīng)用有著重大意義。總而言之,該系統(tǒng)拓寬了3D微納加工在多個(gè)科研領(lǐng)域和工業(yè)行業(yè)應(yīng)用的更多可能性(如生命科學(xué)、材料工程、微流體、微納光學(xué)、微機(jī)械和微電子機(jī)械系統(tǒng)(MEMS)等)。全新Quantum X shape作為Nanoscribe工業(yè)級(jí)無(wú)掩膜光刻系統(tǒng)Quantum X產(chǎn)品系列的第二臺(tái)設(shè)備,可實(shí)現(xiàn)在25 cm2面積內(nèi)打印任何結(jié)構(gòu),很大程度推動(dòng)了生命科學(xué),微流體,材料工程學(xué)中復(fù)雜應(yīng)用的快速原型制作。微米級(jí)分辨率,咨詢納糯三維科技(上海)有限公司。湖南微納米Nanoscribe微流道

湖南微納米Nanoscribe微流道,Nanoscribe

Nanoscribe稱,Quantum X是世界上**基于雙光子灰度光刻技術(shù)(two-photon grayscale lithography,2GL)的工業(yè)系統(tǒng),目前該技術(shù)正在申請(qǐng)專利。2GL將灰度光刻技術(shù)與Nanoscribe的雙光子聚合技術(shù)相結(jié)合,可生產(chǎn)折射和衍射微光學(xué)以及聚合物母版的原型。多層衍射光學(xué)元件(diffractiveopticalelement,DOE)可以通過在掃描平面內(nèi)調(diào)制激光功率來(lái)完成,從而減少多層微制造所需的打印時(shí)間。Nanoscribe表示,折射微光學(xué)也受益于2GL工藝的加工能力,可制作單個(gè)光學(xué)元件、填充因子高達(dá)100%的陣列,以及可以在直接和無(wú)掩模工藝中實(shí)現(xiàn)各種形狀,如球面和非球面透鏡。海南實(shí)驗(yàn)室Nanoscribe無(wú)掩膜光刻N(yùn)anoscribe是德國(guó)高精度增材制造系統(tǒng)的先驅(qū)。

湖南微納米Nanoscribe微流道,Nanoscribe

文章中介紹了高精度3D打印,并重點(diǎn)講解了先進(jìn)的打印材料是如何讓雙光子聚合技術(shù)應(yīng)用錦上添花的。Nanoscribe公司的Photonic Professional GT2系統(tǒng)把雙光子聚合技術(shù)融入強(qiáng)大了3D打印工作流程,實(shí)現(xiàn)了各種不同的打印方案。雙光子聚合技術(shù)用于3D微納結(jié)構(gòu)的增材制造,可以通過激光直寫而避免使用昂貴的掩模版和復(fù)雜的光刻步驟來(lái)創(chuàng)建3D和2.5D微結(jié)構(gòu)制作。 Nanoscribe的雙光子灰度光刻激光直寫技術(shù)(2GL ®)可用于工業(yè)領(lǐng)域2.5D微納米結(jié)構(gòu)原型母版制作。2GL通過創(chuàng)新的設(shè)計(jì)重新定義了典型復(fù)雜結(jié)構(gòu)微納光學(xué)元件的微納加工制造。該技術(shù)結(jié)合了灰度光刻的出色性能,以及雙光子聚合的亞微米級(jí)分辨率和靈活性。

由Nanoscribe研發(fā)的IP系列光刻膠是用于特別高分辨率微納3D打印的標(biāo)準(zhǔn)材料。所打印的亞微米級(jí)別分辨率器件具有特別高的形狀精度,屬于目前市場(chǎng)上易于操作的“負(fù)膠”。IP樹脂作為高效的打印材料,是Nanoscribe微納加工解決方案的基本組成部分之一。我們提供針對(duì)優(yōu)化不同光刻膠和應(yīng)用領(lǐng)域的高級(jí)配套軟件,從而簡(jiǎn)化3D打印工作流程并加快科研和工業(yè)領(lǐng)域的設(shè)計(jì)迭代周期,包括仿生表面,微光學(xué)元件,機(jī)械超材料和3D細(xì)胞支架等。利用Nanoscribe的雙光子聚合微納3D打印技術(shù),斯圖加特大學(xué)和阿德萊德大學(xué)的研究人員聯(lián)手澳大利亞醫(yī)學(xué)研究中心的科學(xué)家們新研發(fā)的微型內(nèi)窺鏡Nanoscribe的Photonic Professional系列打印系統(tǒng)制作的微流控元件可以完全嵌入進(jìn)預(yù)制的二維微流道系統(tǒng)。

湖南微納米Nanoscribe微流道,Nanoscribe

**是全世界一個(gè)主要死亡原因,2020年有近1000萬(wàn)人死于**[1]。而其中膠質(zhì)母細(xì)胞瘤是一種極具破壞性的腦**,其*細(xì)胞增殖非??烨揖哂?*性。為了研究、***和破壞腦腫瘤細(xì)胞,研究人員正在研究使用質(zhì)子放射***,該***手段已被證明在不同**類型中比x射線放射***更有效和微創(chuàng)的技術(shù)。然而,質(zhì)子放射***的成本很高,這使得在動(dòng)物和人類身上進(jìn)行的試驗(yàn)也變得非常昂貴,幾乎無(wú)法進(jìn)行。質(zhì)子放射***的高成本也導(dǎo)致缺乏從細(xì)胞水平了解質(zhì)子對(duì)膠質(zhì)母細(xì)胞瘤影響的臨床研究。體外模型為評(píng)估*細(xì)胞對(duì)藥物和輻射的反應(yīng)提供了一個(gè)平臺(tái)。然而,由于無(wú)法模擬體內(nèi)自然發(fā)生的3D環(huán)境,傳統(tǒng)2D單層細(xì)胞培養(yǎng)存在很大局限性。為了尋找更真實(shí)的模擬環(huán)境,代爾夫特理工大學(xué)(DelftUniversityofTechnology)的科學(xué)家們利用Nanoscribe的3D微納加工系統(tǒng)制作了3D工程細(xì)胞微環(huán)境,并且***次在質(zhì)子束放射實(shí)驗(yàn)中研究了所培養(yǎng)的膠質(zhì)母細(xì)胞瘤細(xì)胞3D打印支架,以探究其對(duì)輻射的反應(yīng)。令人印象深刻的是,該實(shí)驗(yàn)結(jié)果顯示,與2D單層細(xì)胞相比,3D工程細(xì)胞培養(yǎng)中的DNA損傷得到了***降低。更多有關(guān)微納3D打印產(chǎn)品和技術(shù)咨詢,歡迎聯(lián)系 納糯三維科技(上海)有限公司。重慶Nanoscribe生物醫(yī)學(xué)

使用Nanoscribe的3D微加工技術(shù)并配合其新型研發(fā)的IP-Visio光刻膠,可以打印極其復(fù)雜的3D微支架。湖南微納米Nanoscribe微流道

Nanoscribe首屆線上用戶大會(huì)于九月順利召開,在微流控研究中,通常在針對(duì)微流控器件和芯片的快速成型制作中會(huì)結(jié)合不同制造方法。亞琛工業(yè)大學(xué)(RWTHUniversityofAachen)和不來(lái)梅大學(xué)(UniversityofBremen)的研究小組提出將三維結(jié)構(gòu)的芯片結(jié)構(gòu)打印到預(yù)制微納通道中。生命科學(xué)研究的驅(qū)動(dòng)力是三維打印模擬人類細(xì)胞形狀和大小的支架,以推動(dòng)細(xì)胞培養(yǎng)和組織工程學(xué)。丹麥技術(shù)大學(xué)(DTU)和德國(guó)于利希研究中心的研究團(tuán)隊(duì)展示了他們的成就,并強(qiáng)調(diào)了光刻膠如IP-L780和Nanoscribe新型柔性打印材料IP-PDMS的重要性。在微納光學(xué)和光子學(xué)研究中,布魯塞爾自由大學(xué)的研究人員提出了用于光纖到光纖和光纖到芯片連接的錐形光纖和低損耗波導(dǎo)等解決方案湖南微納米Nanoscribe微流道