美國全自動(dòng)多光子顯微鏡峰值功率密度

來源: 發(fā)布時(shí)間:2024-10-23

Ca2+是重要的第二信使,對(duì)于調(diào)節(jié)細(xì)胞的生理反應(yīng)具有極其重要的作用,開發(fā)和利用雙光子熒光顯微成像技術(shù)對(duì)Ca2+熒光信號(hào)進(jìn)行觀測,可以從某些方面對(duì)有機(jī)體或細(xì)胞的變化機(jī)制進(jìn)行分析,具有重要的意義。利用雙光子熒光顯微成像技術(shù)可以觀察細(xì)胞內(nèi)用熒光探針標(biāo)記的Ca2*的時(shí)間和空間的熒光圖像的變化,還可以觀察細(xì)胞某一層面或局部的(Ca2+)熒光圖像和變化。通過對(duì)單細(xì)胞的研究發(fā)現(xiàn),Ca2+不僅在細(xì)胞局部區(qū)域間的分布是不均勻的,而且細(xì)胞內(nèi)各局部區(qū)域的不同深度或?qū)哟伍g也存在不同程度的Ca2+梯差即所謂的空間Ca2梯差。多光子顯微鏡,助力科研人員深入探索生命科學(xué)的奧秘。美國全自動(dòng)多光子顯微鏡峰值功率密度

美國全自動(dòng)多光子顯微鏡峰值功率密度,多光子顯微鏡

有許多方法可以實(shí)現(xiàn)快速光柵掃描,例如使用振鏡進(jìn)行快速2D掃描,以及將振鏡與可調(diào)電動(dòng)透鏡相結(jié)合進(jìn)行快速3D掃描。而可調(diào)電動(dòng)式鏡頭由于機(jī)械慣性的限制,無法在軸向快速切換焦點(diǎn),影響成像速度?,F(xiàn)在它可以被空間光調(diào)制器(SLM)取代。遠(yuǎn)程對(duì)焦也是實(shí)現(xiàn)3D成像的一種手段,如圖2所示。LSU模塊中,掃描振鏡水平掃描,ASU模塊包括物鏡L1和反射鏡M,通過調(diào)整M的位置實(shí)現(xiàn)軸向掃描該技術(shù)不僅可以校正主物鏡L2引入的光學(xué)像差,還可以進(jìn)行快速軸向掃描。為了獲得更多的神經(jīng)元成像,可以通過調(diào)整顯微鏡的物鏡設(shè)計(jì)來放大FOV。然而,大NA和大FOV的物鏡通常很重,不能快速移動(dòng)以進(jìn)行快速軸向掃描,因此大FOV系統(tǒng)依賴于遠(yuǎn)程聚焦、SLM和可調(diào)電動(dòng)透鏡。美國多光子顯微鏡層析成像多光子共聚焦掃描顯微鏡比雙光子共聚焦掃描顯微鏡具有更高的空間分辨率。

美國全自動(dòng)多光子顯微鏡峰值功率密度,多光子顯微鏡

現(xiàn)代分子生物學(xué)技術(shù)的迅速發(fā)展和科技的進(jìn)步,特別是隨著后基因組時(shí)代的到來,人們已經(jīng)能夠根據(jù)需要建立各種細(xì)胞模型,為在體研究基因表達(dá)規(guī)律、分子間的相互作用、細(xì)胞的增殖、細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)、誘導(dǎo)分化、細(xì)胞凋亡以及新的血管生成等提供了良好的生物學(xué)條件。然而,盡管人們利用現(xiàn)有的分子生物學(xué)方法,已經(jīng)對(duì)基因表達(dá)和蛋白質(zhì)之間的相互作用進(jìn)行了深入、細(xì)致的研究,但仍然不能實(shí)現(xiàn)對(duì)蛋白質(zhì)和基因活動(dòng)的實(shí)時(shí)、動(dòng)態(tài)監(jiān)測。在細(xì)胞的生理過程中,基因、尤其是蛋白質(zhì)的表達(dá)、修飾和相萬作用往往發(fā)生可逆的、動(dòng)態(tài)的變化。目前的分子生物學(xué)方法還不能捕獲到蛋白質(zhì)和基因的這些變化,但獲取這些信息對(duì)與研究基因的表達(dá)和蛋白質(zhì)之間的相互作用又至關(guān)重要。因此,發(fā)展能用于、動(dòng)態(tài)、實(shí)時(shí)、連續(xù)監(jiān)測蛋白質(zhì)和基因活動(dòng)的方法非常必要。

現(xiàn)代分子生物學(xué)技術(shù)的迅速發(fā)展和科技的進(jìn)步,特別是隨著后基因組時(shí)代的到來,人們已經(jīng)能夠根據(jù)需要建立各種細(xì)胞模型,為在體研究基因表達(dá)規(guī)律、分子間的相互作用、細(xì)胞的增殖、細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)、誘導(dǎo)分化、細(xì)胞凋亡以及新的血管生成等提供了良好的生物學(xué)條件。然而,盡管人們利用現(xiàn)有的分子生物學(xué)方法,已經(jīng)對(duì)基因表達(dá)和蛋白質(zhì)之間的相互作用進(jìn)行了深入、細(xì)致的研究,但仍然不能實(shí)現(xiàn)對(duì)蛋白質(zhì)和基因活動(dòng)的實(shí)時(shí)、動(dòng)態(tài)監(jiān)測。在細(xì)胞的生理過程中,基因、尤其是蛋白質(zhì)的表達(dá)、修飾和相萬作用往往發(fā)生可逆的、動(dòng)態(tài)的變化。目前的分子生物學(xué)方法還不能捕獲到蛋白質(zhì)和基因的這些變化,但獲取這些信息對(duì)與研究基因的表達(dá)和蛋白質(zhì)之間的相互作用又至關(guān)重要。因此,發(fā)展能用于、動(dòng)態(tài)、實(shí)時(shí)、連續(xù)監(jiān)測蛋白質(zhì)和基因活動(dòng)的方法是非常必要的。利用多光子顯微鏡,進(jìn)行無損、高分辨率的生物組織層析成像。

美國全自動(dòng)多光子顯微鏡峰值功率密度,多光子顯微鏡

隨著現(xiàn)代分子生物學(xué)技術(shù)的快速發(fā)展和科學(xué)技術(shù)的進(jìn)步,特別是后基因組時(shí)代的到來,人們已經(jīng)能夠根據(jù)需要建立各種細(xì)胞模型,這為在體內(nèi)研究基因表達(dá)、分子間相互作用、細(xì)胞增殖、細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)、誘導(dǎo)分化、細(xì)胞凋亡和新生血管生成提供了良好的生物學(xué)條件。然而,盡管利用現(xiàn)有的分子生物學(xué)方法對(duì)基因表達(dá)與蛋白質(zhì)的相互作用進(jìn)行了深入細(xì)致的研究,但仍然無法實(shí)現(xiàn)對(duì)蛋白質(zhì)和基因活性的實(shí)時(shí)動(dòng)態(tài)監(jiān)測。在細(xì)胞的生理過程中,基因尤其是蛋白質(zhì)的表達(dá)、修飾和相互作用往往是可逆的、動(dòng)態(tài)變化的。目前,分子生物學(xué)方法無法捕捉到蛋白質(zhì)和基因的這些變化,但獲得這些信息對(duì)于研究基因表達(dá)與蛋白質(zhì)的相互作用非常重要。因此,有必要發(fā)展一種動(dòng)態(tài)、實(shí)時(shí)、連續(xù)監(jiān)測蛋白質(zhì)和基因活性的方法。多光子顯微鏡可以更好的了解神經(jīng)信號(hào)之間復(fù)雜動(dòng)態(tài)的編碼過程。進(jìn)口多光子顯微鏡三維分辨率

多光子顯微鏡的大多數(shù)補(bǔ)償器都采用棱鏡。美國全自動(dòng)多光子顯微鏡峰值功率密度

比較兩表格中的相關(guān)參數(shù)可以看出,基于分子光學(xué)標(biāo)記的成像技術(shù)已經(jīng)在生物活檢和基因表達(dá)規(guī)律方面展示了較大的優(yōu)勢(shì)。例如,正電子發(fā)射斷層成像(PET)可實(shí)現(xiàn)對(duì)分子代謝的成像,空間分辨率∶1-2mm,時(shí)間分辨率;分鐘量級(jí)。與PET比較,光學(xué)成像的應(yīng)用場合更廣(可測量更多的參數(shù),請(qǐng)參見表1-1),且具有更高的時(shí)間分辨率(秒級(jí)),空間分辨率可達(dá)到微米。因此,二者相比,雖然光學(xué)成像在測量深度方面不及PET,但在測量參數(shù)種類與時(shí)空分辨率方面有一定優(yōu)勢(shì)。對(duì)于小動(dòng)物(如小白鼠)研究來說,光學(xué)成像技術(shù)可以實(shí)現(xiàn)小動(dòng)物整體成像和在體基因表達(dá)成像。例如,初步研究表明,熒光介導(dǎo)層析成像可達(dá)到近10cm的測量深度;基于多光子激發(fā)的顯微成像技術(shù)可望實(shí)現(xiàn)小鼠體內(nèi)基因表達(dá)的實(shí)時(shí)在體成像。美國全自動(dòng)多光子顯微鏡峰值功率密度