在體多光子顯微鏡作用

來源: 發(fā)布時間:2023-04-11

對于雙光子(2P)成像而言,離焦和近表面熒光激發(fā)是兩個比較大的深度限制因素,而對于三光子(3P)成像這兩個問題大大減小,但是三光子成像由于熒光團的吸收截面比2P要小得多,所以需要更高數量級的脈沖能量才能獲得與2P激發(fā)的相同強度的熒光信號。功能性3P顯微鏡比結構性3P顯微鏡的要求更高,它需要更快速的掃描,以便及時采樣神經元活動;需要更高的脈沖能量,以便在每個像素停留時間內收集足夠的信號。復雜的行為通常涉及到大型的大腦神經網絡,該網絡既具有局部的連接又具有遠程的連接。要想將神經元活動與行為聯系起來,需要同時監(jiān)控非常龐大且分布普遍的神經元的活動,大腦中的神經網絡會在幾十毫秒內處理傳入的刺激,要想了解這種快速的神經元動力學,就需要MPM具備對神經元進行快速成像的能力。快速MPM方法可分為單束掃描技術和多束掃描技術。1990年A.Mayer在Science上刊文展示了雙光子激光掃描熒光顯微鏡。在體多光子顯微鏡作用

在體多光子顯微鏡作用,多光子顯微鏡

有許多方法可以實現快速光柵掃描,例如使用振鏡進行快速2D掃描,以及將振鏡與可調電動透鏡相結合進行快速3D掃描。而可調電動式鏡頭由于機械慣性的限制,無法在軸向快速切換焦點,影響成像速度?,F在它可以被空間光調制器(SLM)取代。遠程對焦也是實現3D成像的一種手段,如圖2所示。LSU模塊中,掃描振鏡水平掃描,ASU模塊包括物鏡L1和反射鏡M,通過調整M的位置實現軸向掃描該技術不僅可以校正主物鏡L2引入的光學像差,還可以進行快速軸向掃描。為了獲得更多的神經元成像,可以通過調整顯微鏡的物鏡設計來放大FOV。然而,大NA和大FOV的物鏡通常很重,不能快速移動以進行快速軸向掃描,因此大FOV系統(tǒng)依賴于遠程聚焦、SLM和可調電動透鏡。Ultima 2P Plus多光子顯微鏡價格多光子顯微鏡的發(fā)展歷史充滿了貢獻、開發(fā)、進步和數個世紀以來多個來源和地點的改進。

在體多光子顯微鏡作用,多光子顯微鏡

    Ca2+是重要的第二信使,對于調節(jié)細胞的生理反應具有重要的作用,開發(fā)和利用雙光子熒光顯微成像技術對Ca2+熒光信號進行觀測,可以從某些方面對有機體或細胞的變化機制進行分析,具有重要的意義。利用雙光子熒光顯微成像技術可以觀察細胞內用熒光探針標記的Ca2*的時間和空間的熒光圖像的變化,還可以觀察細胞某一層面或局部的(Ca2+)熒光圖像和變化。通過對單細胞的研究發(fā)現,Ca2+不僅在細胞局部區(qū)域間的分布是不均勻的,而且細胞內各局部區(qū)域的不同深度或層次間也存在不同程度的Ca2+梯差即所謂的空間Ca2梯差。

多束掃描技術可以同時對神經元組織的不同位置進行成像。該技術:對于兩個遠程成像位置(相距1-2mm以上),通常采用兩個**的路徑進行成像;對于相鄰區(qū)域,通常使用單個物鏡的多個光束進行成像。多光束掃描技術必須特別注意激發(fā)光束之間的串擾,這可以通過事后光源分離或時空復用來解決。事后光源分離法是指分離光束以消除串擾的算法;時空復用法是指同時使用多個激發(fā)光束,每個光束的脈沖在時間上被延遲,使不同光束激發(fā)的單個熒光信號可以暫時分離。引入的光束越多,可以成像的神經元越多,但多束會導致熒光衰減時間重疊增加,從而限制了分辨信號源的能力;并且復用對電子設備的工作速度要求很高;大量的光束也需要較高的激光功率來維持單束的信噪比,這樣容易導致組織損傷。利用多光子顯微鏡的多點光ji活能力,我們可以研究多個神經細胞之間的連接和控制。

在體多光子顯微鏡作用,多光子顯微鏡

2020年,JianglaiWu等人提出提高2PM橫向掃描速率的裝置,稱為FACED(free-spaceangular-chirp-enhanceddelay)。圓柱透鏡將激光束一維聚焦,會聚角為Δθ。光束進入到一對幾乎平行的高反射鏡中,其間距為S,偏角為α。經過反射鏡多次反射后,激光脈沖被分成多個傳播方向不同的子脈沖(N=Δθ/α),脈沖間以2S/c的時間延遲(c,光速)回射。FACED模塊輸出處的子脈沖序列可以看作從虛擬光源陣列發(fā)出的光,這些子脈沖在中繼到顯微鏡物鏡后形成了一個空間上分離且時間延遲的焦點陣列。然后將該模塊并入具有高速數據采集系統(tǒng)的標準雙光子熒光顯微鏡中。光源是具有1MHz重復頻率的920nm的激光器,通過FACED模塊可產生80個脈沖焦點,其脈沖時間間隔為2ns。這些焦點是虛擬源的圖像,虛擬源越遠,物鏡處的光束尺寸越大,焦點越小。光束沿y軸比x軸能更好地充滿物鏡,從而導致x軸的橫向分辨率為0.82μm,y軸的橫向分辨率為0.35μm。多光子顯微鏡市場集中,由于投產生產的成本較高,技術難度大,目前涌現的新企業(yè)不多。在體多光子顯微鏡作用

利用多光子顯微鏡的光遺傳學操作能力,我們可以對某類神經元的ji活和失活進行高精度的操作。在體多光子顯微鏡作用

2020年,TonmoyChakraborty等人提出了加速2PM軸向掃描速度的方法[2]。在光學顯微鏡中,物鏡或樣品緩慢的軸向掃描速度限制了體成像的速度。近年來,通過使用遠程聚焦技術或電調諧透鏡(ETL)已經實現了快速軸向掃描。但遠程對焦時對反射鏡的機械驅動會限制軸向掃描速度,ETL會引入球差和高階像差,無法進行高分辨率成像。為了克服這些限制,該小組引入了一種新的光學設計,可以將橫向掃描轉換為無球面像差的軸向掃描,以實現高分辨率成像。有兩種方法可以實現這種設計。***個可以執(zhí)行離散的軸向掃描,另一個可以執(zhí)行連續(xù)的軸向掃描。如圖3a所示,特定裝置由兩個垂直臂組成,每個臂具有4F望遠鏡和物鏡。遠程聚焦臂由振鏡掃描鏡(GSM)和空氣物鏡(OBJ1)組成,另一個臂(稱為照明臂)由浸沒物鏡(OBJ2)組成。兩個臂對齊,使得GSM與兩個物鏡的后焦平面共軛。準直后的激光束經偏振分束器反射進入遠程聚焦臂,由GSM進行掃描,使OBJ1產生的激光焦點可以進行水平掃描。在體多光子顯微鏡作用

因斯蔻浦(上海)生物科技有限公司是國內一家多年來專注從事nVista,nVoke,3D bioplotte,invivo的老牌企業(yè)。公司位于中山北路1759號浦發(fā)廣場D座803,成立于2019-05-27。公司的產品營銷網絡遍布國內各大市場。公司主要經營nVista,nVoke,3D bioplotte,invivo,公司與nVista,nVoke,3D bioplotte,invivo行業(yè)內多家研究中心、機構保持合作關系,共同交流、探討技術更新。通過科學管理、產品研發(fā)來提高公司競爭力。公司會針對不同客戶的要求,不斷研發(fā)和開發(fā)適合市場需求、客戶需求的產品。公司產品應用領域廣,實用性強,得到nVista,nVoke,3D bioplotte,invivo客戶支持和信賴。因斯蔻浦(上海)生物科技有限公司以誠信為原則,以安全、便利為基礎,以優(yōu)惠價格為nVista,nVoke,3D bioplotte,invivo的客戶提供貼心服務,努力贏得客戶的認可和支持,歡迎新老客戶來我們公司參觀。