進(jìn)口可升級(jí)膜片鉗研究

來(lái)源: 發(fā)布時(shí)間:2024-10-03

離子通道的近代觀念源于Hodgkin、Huxley、Katz等人在20世紀(jì)30—50年代的開(kāi)創(chuàng)性研究。在1902年,Bernstein創(chuàng)造性地將Nernst的理論應(yīng)用到生物膜上,提出了“膜學(xué)說(shuō)”。他認(rèn)為在靜息狀態(tài)下,細(xì)胞膜只對(duì)鉀離子具有通透性;而當(dāng)細(xì)胞興奮的瞬間,膜的破裂使其喪失了選擇通透性,所有的離子都可以自由通過(guò)。Cole等人在1939年進(jìn)行的高頻交變電流測(cè)量實(shí)驗(yàn)表明,當(dāng)動(dòng)作電位被觸發(fā)時(shí),雖然細(xì)胞的膜電導(dǎo)大為增加,但膜電容卻只略有下降,這個(gè)事實(shí)表明膜學(xué)說(shuō)所宣稱的膜破裂的觀點(diǎn)是不可靠的。1949年Cole在玻璃微電極技術(shù)的基礎(chǔ)上發(fā)明了電壓鉗位(voltageclamptechnique)技術(shù)電壓鉗技術(shù)的主要在于將膜電位固定在指令電壓的水平,這樣才能研究在給定膜電位下膜電流隨時(shí)間的變化關(guān)系。進(jìn)口可升級(jí)膜片鉗研究

進(jìn)口可升級(jí)膜片鉗研究,膜片鉗

光遺傳學(xué)調(diào)控技術(shù)是近幾年正在迅速發(fā)展的一項(xiàng)整合了光學(xué)、基因操作技術(shù)、電生理等多學(xué)科交叉的生物技術(shù)。NatureMethods雜志將此技術(shù)評(píng)為"Methodoftheyear2010"[19];美國(guó)麻省理工學(xué)院科技評(píng)述(MITTechnologyReview,2010)在其總結(jié)性文章"Theyearinbiomedicine"中指出:光遺傳學(xué)調(diào)控技術(shù)現(xiàn)已經(jīng)迅速成為生命科學(xué),特別是神經(jīng)和心臟研究領(lǐng)域中熱門的研究方向之一。目前這一技術(shù)正在被全球幾百家從事心臟學(xué)、神經(jīng)科學(xué)和神經(jīng)工程研究的實(shí)驗(yàn)室使用,幫助科學(xué)家們深入理解大腦的功能,進(jìn)而為深刻認(rèn)識(shí)神經(jīng)、精神疾病、心血管疾病的發(fā)病機(jī)理并研發(fā)針對(duì)疾病干預(yù)和的新技術(shù)。德國(guó)單通道膜片鉗腦片由此形成了一門細(xì)胞學(xué)科—電生理學(xué),即是用電生理的方法來(lái)記錄和分析細(xì)胞產(chǎn)生電的大小和規(guī)律的科學(xué)。

進(jìn)口可升級(jí)膜片鉗研究,膜片鉗

    電壓鉗技術(shù),是20世紀(jì)初由Cole發(fā)明,Hodgkin和Huxley完善,其設(shè)計(jì)的主要目的是為了證明動(dòng)作電位的產(chǎn)生機(jī)制,即動(dòng)作電位的峰電位是由于膜對(duì)鈉的通透性發(fā)生了一過(guò)性的增大過(guò)程。但當(dāng)時(shí)沒(méi)有直接測(cè)定膜通透性的方法,于是就用膜對(duì)某種離子的電導(dǎo)來(lái)**該種離子的通透性,膜電導(dǎo)測(cè)定的依據(jù)是電學(xué)中的歐姆定律,如膜的Na電導(dǎo)GNa與電化學(xué)驅(qū)動(dòng)力(Em-ENa)和膜電流INa的關(guān)系GNa=INa/(Em-ENa).因此可通過(guò)測(cè)量膜電流,再利用歐姆定律來(lái)計(jì)算膜電導(dǎo),但是,利用膜電流來(lái)計(jì)算膜電導(dǎo)時(shí),記錄膜電流期間的膜電位必須保持不變,否則膜電流的變化就不能**膜電導(dǎo)的變化。這一條件是利用電壓鉗技術(shù)實(shí)現(xiàn)的。下張幻燈中的右邊兩張圖是Hodgkin和Huxley在半個(gè)世紀(jì)以前利用電壓鉗記錄的搶烏賊的動(dòng)作電位和動(dòng)作電位過(guò)程中的膜電流的變化圖,他們的實(shí)驗(yàn)***證明參與動(dòng)作電位的離子流由Na,k,漏(Cl)三種成分組成。并對(duì)這些離子流進(jìn)行了定量分析。這一技術(shù)對(duì)闡明動(dòng)作電位的本質(zhì)和離子通道的的研究做出了極大的貢獻(xiàn)。

全細(xì)胞膜片鉗記錄(whole-cellpatch-clamprecording)是應(yīng)用*早,也是*廣的鉗位技術(shù),它相當(dāng)于連續(xù)的單電極電壓鉗位記錄,也就是說(shuō)全細(xì)胞記錄類似于傳統(tǒng)的細(xì)胞內(nèi)記錄,但它具有更大的優(yōu)越性,如高分辨率、低噪聲、極好的穩(wěn)定性以及能控制細(xì)胞內(nèi)的成分等。全細(xì)胞記錄技采測(cè)定的是一個(gè)細(xì)胞內(nèi)全部**通道的電流,記錄過(guò)程中電極的溶液取代了原細(xì)胞質(zhì)的成分。雖然膜片鉗記錄技術(shù)與*初的單電極電壓鉗位相比進(jìn)步了很多,尤其在單離子通道鉗位記錄方面,細(xì)胞或腦片的組織選擇及實(shí)驗(yàn)溶液的制備仍然是很重要的步驟。滔博生物TOP-Bright專注基于多種離子通道靶點(diǎn)的化合物體外篩選,服務(wù)于全球藥企的膜片鉗公司,快速獲得實(shí)驗(yàn)結(jié)果,專業(yè)團(tuán)隊(duì),7*45小時(shí)隨時(shí)人工在線咨詢.在細(xì)胞膜的電興奮過(guò)程中,脂質(zhì)層膜電容的反應(yīng)是被動(dòng)的,其電流電壓曲線是線性的。

進(jìn)口可升級(jí)膜片鉗研究,膜片鉗

全細(xì)胞記錄構(gòu)型(whole-cellrecording) 高阻封接形成后,繼續(xù)以負(fù)壓抽吸使電極管內(nèi)細(xì)胞膜破裂,電極胞內(nèi)液直接相通,而與浴槽液絕緣,這種形式稱為“全細(xì)胞”記錄。它既可記錄膜電位又可記錄膜電流。其中膜電位可在電流鉗情況下記錄,或?qū)⒉9苓B到標(biāo)準(zhǔn)高阻微電極放大器上記錄。在電壓鉗條件下記錄到的大細(xì)胞全細(xì)胞電流可達(dá)nA級(jí),全細(xì)胞鉗的串聯(lián)電阻(玻管和細(xì)胞內(nèi)部之間的電阻)應(yīng)當(dāng)補(bǔ)償。任何流經(jīng)膜的電流均流經(jīng)這一電阻,所引起的電壓降將使玻管電壓不同于細(xì)胞內(nèi)的真正電位。電流愈大,愈需對(duì)串聯(lián)電阻進(jìn)行補(bǔ)償。全細(xì)胞鉗應(yīng)注意細(xì)胞必需合理的小到其電流能被放大器測(cè)到的范圍(25~50nA)。減少串聯(lián)電阻的方法是玻管尖要比單通道記錄大。封接(seal)是膜片鉗記錄的關(guān)鍵步驟之一。進(jìn)口全自動(dòng)膜片鉗解決方案

在細(xì)胞膜的電學(xué)模型中,膜電容和膜電導(dǎo)構(gòu)成了一個(gè)并聯(lián)回路。進(jìn)口可升級(jí)膜片鉗研究

膜片鉗技術(shù)與其它技術(shù)相結(jié)合Neher等**將膜片鉗技術(shù)與Fura2熒光測(cè)鈣技術(shù)結(jié)合,同時(shí)進(jìn)行如細(xì)胞內(nèi)熒光強(qiáng)度、細(xì)胞膜離子通道電流及細(xì)胞膜電容等多指標(biāo)變化的快速交替測(cè)定,這樣便可得出同一事件過(guò)程中,多種因素各自的變化情況,進(jìn)而可分析這些變化間的相互關(guān)系。Neher將可光解出鈣離子的鈣螯合物引入膜片鉗技術(shù),進(jìn)而可以定量研究鈣離子濃度與分泌率的關(guān)系及比較大分泌率等指標(biāo)。他又創(chuàng)膜片鉗的膜電容檢測(cè)與碳纖電極電化學(xué)檢測(cè)聯(lián)合運(yùn)用的技術(shù)。之后又將光電聯(lián)合檢測(cè)技術(shù)與碳纖電極電化學(xué)檢測(cè)技術(shù)首先結(jié)合起來(lái)。這種結(jié)合既能研究分泌機(jī)制,又能鑒別分泌物質(zhì),還能互相彌補(bǔ)各單種方法的不足。Eberwine等于1991年首先將膜片鉗技術(shù)與RT-PCR技術(shù)結(jié)合起來(lái)運(yùn)用,可對(duì)形態(tài)相似而電活動(dòng)不同的結(jié)果作出分子水平的解釋,從此開(kāi)始了膜片鉗與分子生物學(xué)技術(shù)相結(jié)合的時(shí)代∶基因重組技術(shù),膜通道蛋白重建技術(shù)。進(jìn)口可升級(jí)膜片鉗研究