低場(chǎng)核磁共振水泥基材料-土壤-巖芯等多孔介質(zhì)凍土未凍水檢測(cè)

來(lái)源: 發(fā)布時(shí)間:2023-11-21

孔徑分布:巖石的孔隙分類(lèi)一般按孔隙的等效毛細(xì)管半徑劃分:

1)超毛細(xì)管孔隙:流體重力作用下可自由流動(dòng)(大裂縫、溶洞、未膠結(jié)或膠結(jié)疏松的砂巖)【孔隙直徑>0.5mm;裂縫寬度>0.25mm】

2)毛細(xì)管孔隙:流體在外力作用下可自由流動(dòng)(一般砂巖)【孔隙直徑[0.2μm,0.5mm];裂縫寬度[0.1μm,0.25mm]】

3)微毛細(xì)管孔隙:流體在自然壓差下無(wú)法流動(dòng)(泥巖)【孔隙直徑<0.2μm;裂縫寬度<0.1μm】孔隙大小分布曲線(xiàn)及孔隙大小累積分布曲線(xiàn): 水泥基材料-土壤-巖芯等多孔介質(zhì)磁共振分析儀可用于可動(dòng)與不可動(dòng)(固體)有機(jī)質(zhì)隨溫度和壓力的變化分析。低場(chǎng)核磁共振水泥基材料-土壤-巖芯等多孔介質(zhì)凍土未凍水檢測(cè)

低場(chǎng)核磁共振水泥基材料-土壤-巖芯等多孔介質(zhì)凍土未凍水檢測(cè),水泥基材料-土壤-巖芯等多孔介質(zhì)

測(cè)井作為評(píng)價(jià)已鉆探地層的經(jīng)濟(jì)方法,在測(cè)定孔隙度和流體飽和度方面已經(jīng)取得了進(jìn)步,但仍不能提供系統(tǒng)的滲透率估算。這就是為什么核磁共振技術(shù)在20世紀(jì)60年代引起石油工業(yè)的興趣,當(dāng)時(shí)研究人員發(fā)表的研究結(jié)果顯示,核磁共振技術(shù)具有良好的滲透率相關(guān)性。然而,滲透率并不是這種新型脈沖回波核磁共振測(cè)井提供的***巖石物理效益。許多其他巖石物理參數(shù)——與礦物無(wú)關(guān)的總孔隙度;**于其他測(cè)井曲線(xiàn)的水、氣、油飽和度;油的粘度——都是可以達(dá)到的。其他幾個(gè)參數(shù)似乎也觸手可及,從而確保這種新的均勻梯度核磁共振測(cè)井測(cè)量將被證明是迄今為止測(cè)井行業(yè)設(shè)計(jì)的**豐富的地層巖石物理單一來(lái)源。MAG-MED水泥基材料-土壤-巖芯等多孔介質(zhì)儀器特色非常規(guī)巖芯磁共振分析儀可測(cè)0.02毫升水樣,誤差±0.5%,并可對(duì)氣體,如甲烷等,可直接測(cè)量。

低場(chǎng)核磁共振水泥基材料-土壤-巖芯等多孔介質(zhì)凍土未凍水檢測(cè),水泥基材料-土壤-巖芯等多孔介質(zhì)

核磁共振弛豫理論應(yīng)用在70年代極先被引入土壤研究領(lǐng)域,用于測(cè)量土壤樣品中的水含量,之后隨著技術(shù)理論的越來(lái)越成熟,應(yīng)用范圍越來(lái)越廣,如泥煤樣品中水的表征、水與土壤的相互作用、有機(jī)物與土壤的相互作用等。而對(duì)于土壤孔隙特征的表征應(yīng)用則開(kāi)始于90年代,從極初的輔助定性分析,到精確定量表征,從精度要求不高的大尺寸孔隙表征,到納米級(jí)孔隙的分布研究,從單一的表征孔隙,到研究土壤中溶質(zhì)變化、土壤中有機(jī)質(zhì)和陶土膨脹對(duì)孔隙影響的系統(tǒng)研究,與土壤科學(xué)研究領(lǐng)域傳統(tǒng)方法相比,低場(chǎng)時(shí)域核磁共振技術(shù)正以其獨(dú)特的技術(shù)先進(jìn)性,成為土壤科學(xué)研究領(lǐng)域越來(lái)越重要的研究手段和方法。

水泥基材料-土壤-巖芯等多孔介質(zhì)核磁共振檢測(cè)技術(shù)特點(diǎn) 測(cè)量目標(biāo)原子核的特一性 由于不同的原子核在相同的磁場(chǎng)強(qiáng)度下。有不同的進(jìn)動(dòng)頻率。所以我們?cè)跍y(cè)量某一原子核的信號(hào)時(shí)。不會(huì)受到其他原子核的干擾。如在測(cè)量1H原子核時(shí)不會(huì)收到19F原子核的干擾。反之亦然。 通過(guò)T1、 T2的測(cè)量,實(shí)現(xiàn)不同樣品的組分分析。 弛豫時(shí)間T1、 T2由樣品性質(zhì)決定。包括樣品中原子核所處物理化學(xué)環(huán)境、細(xì)胞環(huán)境、樣品中原子核數(shù)目、樣品的相態(tài)等。因此,分析樣品中目標(biāo)原子核的T1、 T2值??蓪?shí)現(xiàn)研究樣品的物理和化學(xué)性質(zhì)。 優(yōu)點(diǎn): 直接測(cè)量,無(wú)需任何處理。 樣品無(wú)損傷分析,可進(jìn)行重復(fù)測(cè)量。 環(huán)保、無(wú)毒、無(wú)任何副作用。 低場(chǎng)核磁共振是一種正在興起的快速無(wú)損檢測(cè)技術(shù)。具有測(cè)試速度快。靈敏度高、無(wú)損、綠色等優(yōu)點(diǎn)。已廣闊應(yīng)用在食品品質(zhì)控制、非酒精性脂肪肝等代謝疾病、石油勘探、水泥水化過(guò)程分析、水泥基材料不同配方選擇、土壤水分物性及孔隙物性研究、土壤固體有機(jī)質(zhì)探測(cè)、非常規(guī)巖芯總體孔隙度及有效孔隙度檢測(cè)、油水氣飽等水泥基材料、土壤、巖芯等多孔介質(zhì)領(lǐng)域。低場(chǎng)核磁設(shè)備一般采用永磁體,測(cè)試樣品介于兩磁極中心,通過(guò)激勵(lì)與信號(hào)處理即可得到穩(wěn)定。

低場(chǎng)核磁共振水泥基材料-土壤-巖芯等多孔介質(zhì)凍土未凍水檢測(cè),水泥基材料-土壤-巖芯等多孔介質(zhì)

粘土結(jié)合水、毛細(xì)管結(jié)合水和可動(dòng)水具有不同的孔隙大小和位置。烴類(lèi)流體在孔隙空間中的位置與鹽水不同,通常占據(jù)較大的孔隙。它們?cè)谡扯群蛿U(kuò)散系數(shù)上也與鹵水不同。核磁共振測(cè)井利用這些差異來(lái)表征孔隙空間中的流體。圖1.13定性地表示了巖石孔隙中不同流體的核磁共振性質(zhì)。一般來(lái)說(shuō),結(jié)合流體的T1和T2時(shí)間都很短,擴(kuò)散速度也很慢(小D),這是由于分子在小孔隙中的運(yùn)動(dòng)受到限制。游離水通常具有中等的T1、T2和D值。碳?xì)浠衔?,如天然氣、輕質(zhì)油、中粘度油和重油,也有非常不同的核磁共振特征。天然氣表現(xiàn)出很長(zhǎng)的T1時(shí)間,但很短的T2時(shí)間和單指數(shù)型弛豫衰減。油的核磁共振特性變化很大,很大程度上取決于油的粘度。較輕的油具有高度的擴(kuò)散,具有較長(zhǎng)的T1和T2時(shí)間,并且通常表現(xiàn)為單指數(shù)衰減。隨著黏度的增加和碳?xì)浠衔锘旌衔镒兊酶訌?fù)雜,擴(kuò)散減少,就像T1和T2時(shí)間一樣,弛豫伴隨著越來(lái)越復(fù)雜的多指數(shù)衰減?;诳紫读黧w信號(hào)的獨(dú)特核磁共振特征,已經(jīng)開(kāi)發(fā)出應(yīng)用程序來(lái)識(shí)別并在某些情況下量化存在的碳?xì)浠衔镱?lèi)型。水泥基材料-土壤-巖芯等多孔介質(zhì)磁共振分析儀可用于非常規(guī)巖芯總孔隙度及有效孔隙度檢測(cè)。一站式水泥基材料-土壤-巖芯等多孔介質(zhì)原理

核磁共振弛豫分析技術(shù)則根據(jù)物體內(nèi)部不同物質(zhì)的弛豫特性實(shí)現(xiàn)物質(zhì)組分的鑒別和定量分析。低場(chǎng)核磁共振水泥基材料-土壤-巖芯等多孔介質(zhì)凍土未凍水檢測(cè)

孔隙結(jié)構(gòu):?jiǎn)沃?、雙重、三重孔隙介質(zhì);共六種孔隙結(jié)構(gòu)類(lèi)型

1、單重孔隙介質(zhì)

1)粒間孔隙結(jié)構(gòu):由大小形狀不同的顆粒組成,顆粒間間隙被膠結(jié)物質(zhì)填充;(等效球體-等直徑/變截面微毛細(xì)管-網(wǎng)絡(luò)模型)

2)純裂縫結(jié)構(gòu):不規(guī)則、不滲透;(裂縫網(wǎng)絡(luò)分隔)

2、雙重孔隙介質(zhì)

1)裂縫-孔隙結(jié)構(gòu):粒間孔隙介質(zhì)又被裂縫分隔為多個(gè)塊狀單元;(雙重孔隙度、滲透率)

2)溶洞-孔隙結(jié)構(gòu):粒間孔隙巖石中分布著大的溶洞,尺寸超過(guò)毛細(xì)管大??;(兩種流動(dòng)規(guī)律:粒間孔滲流規(guī)律、溶洞孔納維斯托克斯方程)

3、三重孔隙介質(zhì)

1)孔隙-微裂縫-大洞穴

2)孔隙-微裂縫-大裂縫 低場(chǎng)核磁共振水泥基材料-土壤-巖芯等多孔介質(zhì)凍土未凍水檢測(cè)