國內(nèi)膜厚儀歡迎選購

來源: 發(fā)布時(shí)間:2024-08-07

在納米量級(jí)薄膜的各項(xiàng)相關(guān)參數(shù)中 ,薄膜材料的厚度是薄膜設(shè)計(jì)和制備過程中的重要參數(shù),是決定薄膜性質(zhì)和性能的基本參量之一,它對(duì)于薄膜的光學(xué)、力學(xué)和電磁性能等都有重要的影響[3]。但是由于納米量級(jí)薄膜的極小尺寸及其突出的表面效應(yīng),使得對(duì)其厚度的準(zhǔn)確測(cè)量變得困難。經(jīng)過眾多科研技術(shù)人員的探索和研究,新的薄膜厚度測(cè)量理論和測(cè)量技術(shù)不斷涌現(xiàn),測(cè)量方法實(shí)現(xiàn)了從手動(dòng)到自動(dòng),有損到無損測(cè)量。由于待測(cè)薄膜材料的性質(zhì)不同,其適用的厚度測(cè)量方案也不盡相同。對(duì)于厚度在納米量級(jí)的薄膜,利用光學(xué)原理的測(cè)量技術(shù)應(yīng)用。相比于其他方法,光學(xué)測(cè)量方法因?yàn)榫哂芯雀?,速度快,無損測(cè)量等優(yōu)勢(shì)而成為主要的檢測(cè)手段。其中具有代表性的測(cè)量方法有橢圓偏振法,干涉法,光譜法,棱鏡耦合法等。白光干涉膜厚測(cè)量技術(shù)可以實(shí)現(xiàn)對(duì)薄膜的非接觸式測(cè)量;國內(nèi)膜厚儀歡迎選購

國內(nèi)膜厚儀歡迎選購,膜厚儀

根據(jù)以上分析可知 ,白光干涉時(shí)域解調(diào)方案的優(yōu)點(diǎn)是:①能夠?qū)崿F(xiàn)測(cè)量;②抗干擾能力強(qiáng),系統(tǒng)的分辨率與光源輸出功率的波動(dòng),光源的波長漂移以及外界環(huán)境對(duì)光纖的擾動(dòng)等因素?zé)o關(guān);③測(cè)量精度與零級(jí)干涉條紋的確定精度以及反射鏡的精度有關(guān);④結(jié)構(gòu)簡(jiǎn)單,成本較低。但是,時(shí)域解調(diào)方法需要借助掃描部件移動(dòng)干涉儀一端的反射鏡來進(jìn)行相位補(bǔ)償,所以掃描裝置的分辨率將影響系統(tǒng)的精度。采用這種解調(diào)方案的測(cè)量分辨率一般是幾個(gè)微米,達(dá)到亞微米的分辨率,主要受機(jī)械掃描部件的分辨率和穩(wěn)定性限制。文獻(xiàn)[46]所報(bào)道的位移掃描的分辨率可以達(dá)到0.54μm。當(dāng)所測(cè)光程差較小時(shí),F(xiàn)-P腔前后表面干涉峰值相距很近,難以區(qū)分,此時(shí)時(shí)域解調(diào)方案的應(yīng)用受到限制。品牌膜厚儀成本價(jià)廣泛應(yīng)用于電子、半導(dǎo)體、光學(xué)、化學(xué)等領(lǐng)域,為研究和開發(fā)提供了有力的手段。

國內(nèi)膜厚儀歡迎選購,膜厚儀

論文主要以半導(dǎo)體鍺和貴金屬金兩種材料為對(duì)象 ,研究了白光干涉法、表面等離子體共振法和外差干涉法實(shí)現(xiàn)納米級(jí)薄膜厚度準(zhǔn)確測(cè)量的可行性。由于不同材料薄膜的特性不同,所適用的測(cè)量方法也不同。半導(dǎo)體鍺膜具有折射率高,在通信波段(1550nm附近)不透明的特點(diǎn),選擇采用白光干涉的測(cè)量方法;而厚度更薄的金膜的折射率為復(fù)數(shù),且能激發(fā)的表面等離子體效應(yīng),因而可借助基于表面等離子體共振的測(cè)量方法;為了進(jìn)一步改善測(cè)量的精度,論文還研究了外差干涉測(cè)量法,通過引入高精度的相位解調(diào)手段,檢測(cè)P光與S光之間的相位差提升厚度測(cè)量的精度。

薄膜作為改善器件性能的重要途徑,被廣泛應(yīng)用于現(xiàn)代光學(xué) 、電子 、醫(yī)療、能源、建材等技術(shù)領(lǐng)域。受薄膜制備工藝及生產(chǎn)環(huán)境影響,成品薄膜存在厚度分布不均、表面粗糙度大等問題,導(dǎo)致其光學(xué)及物理性能達(dá)不到設(shè)計(jì)要求,嚴(yán)重影響成品的性能及應(yīng)用。隨著薄膜生產(chǎn)技術(shù)的迅速發(fā)展,準(zhǔn)確測(cè)量和科學(xué)評(píng)價(jià)薄膜特性作為研究熱點(diǎn),也引起產(chǎn)業(yè)界的高度重視。厚度作為關(guān)鍵指標(biāo)直接影響薄膜工作特性,合理監(jiān)控薄膜厚度對(duì)于及時(shí)調(diào)整生產(chǎn)工藝參數(shù)、降低加工成本、提高生產(chǎn)效率及企業(yè)競(jìng)爭(zhēng)力等具有重要作用和深遠(yuǎn)意義。然而,對(duì)于市場(chǎng)份額占比大的微米級(jí)工業(yè)薄膜,除要求測(cè)量系統(tǒng)不僅具有百納米級(jí)的測(cè)量精度之外,還要求具備體積小、穩(wěn)定性好的特點(diǎn),以適應(yīng)工業(yè)現(xiàn)場(chǎng)環(huán)境的在線檢測(cè)需求。目前光學(xué)薄膜測(cè)厚方法仍無法兼顧高精度、輕小體積,以及合理的系統(tǒng)成本,而具備納米級(jí)測(cè)量分辨力的商用薄膜測(cè)厚儀器往往價(jià)格昂貴、體積較大,且無法響應(yīng)工業(yè)生產(chǎn)現(xiàn)場(chǎng)的在線測(cè)量需求?;谝陨戏治觯菊n題提出基于反射光譜原理的高精度工業(yè)薄膜厚度測(cè)量解決方案,研制小型化、低成本的薄膜厚度測(cè)量系統(tǒng),并提出無需標(biāo)定樣品的高效穩(wěn)定的膜厚計(jì)算算法。研發(fā)的系統(tǒng)可以實(shí)現(xiàn)微米級(jí)工業(yè)薄膜的厚度測(cè)量。白光干涉膜厚儀的應(yīng)用非常廣,特別是在半導(dǎo)體、光學(xué)、電子和化學(xué)等領(lǐng)域。

國內(nèi)膜厚儀歡迎選購,膜厚儀

采用峰峰值法處理光譜數(shù)據(jù)時(shí) ,被測(cè)光程差的分辨率取決于光譜儀或CCD的分辨率。我們只需獲得相鄰的兩干涉峰值處的波長信息即可得出光程差,不必關(guān)心此波長處的光強(qiáng)大小,從而降低數(shù)據(jù)處理的難度。也可以利用多組相鄰的干涉光譜極值對(duì)應(yīng)的波長來分別求出光程差,然后再求平均值作為測(cè)量光程差,這樣可以提高該方法的測(cè)量精度。但是,峰峰值法存在著一些缺點(diǎn):當(dāng)使用寬帶光源作為輸入光源時(shí),接收光譜中不可避免地疊加有與光源同分布的背景光,從而引起峰值處波長的改變,引入測(cè)量誤差。同時(shí),當(dāng)兩干涉信號(hào)之間的光程差很小,導(dǎo)致其干涉光譜只有一個(gè)干涉峰的時(shí)候,此法便不再適用。隨著技術(shù)的進(jìn)步和應(yīng)用領(lǐng)域的拓展,白光干涉膜厚儀的性能和功能將不斷提高和擴(kuò)展。小型膜厚儀推薦

當(dāng)光路長度增加,儀器的分辨率越高,也越容易受到靜態(tài)振動(dòng)等干擾因素的影響,需采取一些減小噪聲的措施。國內(nèi)膜厚儀歡迎選購

光纖白光干涉測(cè)量使用的是寬譜光源 。光源的輸出光功率和中心波長的穩(wěn)定性是光源選取時(shí)需要重點(diǎn)考慮的參數(shù)。論文所設(shè)計(jì)的解調(diào)系統(tǒng)是通過檢測(cè)干涉峰值的中心波長的移動(dòng)實(shí)現(xiàn)的,所以光源中心波長的穩(wěn)定性將對(duì)實(shí)驗(yàn)結(jié)果產(chǎn)生很大的影響。實(shí)驗(yàn)中我們所選用的光源是由INPHENIX公司生產(chǎn)的SLED光源,相對(duì)于一般的寬帶光源具有輸出功率高、覆蓋光譜范圍寬等特點(diǎn)。該光源采用+5V的直流供電,標(biāo)定中心波長為1550nm,且其輸出功率在一定范圍內(nèi)是可調(diào)的,驅(qū)動(dòng)電流可以達(dá)到600mA。國內(nèi)膜厚儀歡迎選購