微米級(jí)膜厚儀傳感器精度

來(lái)源: 發(fā)布時(shí)間:2024-01-19

白光干涉光譜分析是目前白光干涉測(cè)量的一個(gè)重要方向。此項(xiàng)技術(shù)通過(guò)使用光譜儀將對(duì)條紋的測(cè)量轉(zhuǎn)變?yōu)閷?duì)不同波長(zhǎng)光譜的測(cè)量,分析被測(cè)物體的光譜特性,得到相應(yīng)的長(zhǎng)度信息和形貌信息。與白光掃描干涉術(shù)相比,它不需要大量的掃描過(guò)程,因此提高了測(cè)量效率,并減小了環(huán)境對(duì)其影響。此項(xiàng)技術(shù)能夠測(cè)量距離、位移、塊狀材料的群折射率以及多層薄膜厚度等。白光干涉光譜分析基于頻域干涉的理論,采用白光作為寬波段光源,經(jīng)過(guò)分光棱鏡折射為兩束光。這兩束光分別經(jīng)由參考面和被測(cè)物體入射,反射后再次匯聚合成,并由色散元件分光至探測(cè)器,記錄頻域干涉信號(hào)。這個(gè)光譜信號(hào)包含了被測(cè)表面信息,如果此時(shí)被測(cè)物體是薄膜,則薄膜的厚度也包含在光譜信號(hào)當(dāng)中。白光干涉光譜分析將白光干涉和光譜測(cè)量的速度結(jié)合起來(lái),形成了一種精度高且速度快的測(cè)量方法。白光干涉膜厚測(cè)量技術(shù)可以應(yīng)用于納米制造中的薄膜厚度測(cè)量。微米級(jí)膜厚儀傳感器精度

微米級(jí)膜厚儀傳感器精度,膜厚儀

莫侯伊膜厚儀在半導(dǎo)體行業(yè)中具有重要的應(yīng)用價(jià)值膜厚儀的測(cè)量原理主要基于光學(xué)干涉原理。當(dāng)光波穿過(guò)薄膜時(shí),會(huì)發(fā)生干涉現(xiàn)象,根據(jù)干涉條紋的變化可以推導(dǎo)出薄膜的厚度。利用這一原理,通過(guò)測(cè)量干涉條紋的間距或相位差來(lái)計(jì)算薄膜的厚度。膜厚儀通常包括光源、光路系統(tǒng)、檢測(cè)器和數(shù)據(jù)處理系統(tǒng)等部件,能夠?qū)崿F(xiàn)對(duì)薄膜厚度的高精度測(cè)量。在半導(dǎo)體行業(yè)中,薄膜的具體測(cè)量方法主要包括橢偏儀法、X射線衍射法和原子力顯微鏡法等。橢偏儀法是一種常用的薄膜測(cè)量方法,它利用薄膜對(duì)橢偏光的旋轉(zhuǎn)角度來(lái)計(jì)算薄膜的厚度。X射線衍射法則是通過(guò)測(cè)量衍射光的角度和強(qiáng)度來(lái)確定薄膜的厚度和結(jié)晶結(jié)構(gòu)。原子力顯微鏡法則是通過(guò)探針與薄膜表面的相互作用來(lái)獲取表面形貌和厚度信息。這些方法各有特點(diǎn),可以根據(jù)具體的測(cè)量要求選擇合適的方法進(jìn)行薄膜厚度測(cè)量。薄膜的厚度對(duì)于半導(dǎo)體器件的性能和穩(wěn)定性具有重要影響,因此膜厚儀的測(cè)量原理和具體測(cè)量方法在半導(dǎo)體行業(yè)中具有重要意義。隨著半導(dǎo)體工藝的不斷發(fā)展,對(duì)薄膜厚度的要求也越來(lái)越高,膜厚儀的研究和應(yīng)用將繼續(xù)成為半導(dǎo)體行業(yè)中的熱點(diǎn)領(lǐng)域。透明薄膜測(cè)厚儀 膜厚儀白光干涉膜厚測(cè)量技術(shù)可以應(yīng)用于電子顯示器中的薄膜厚度測(cè)量。

微米級(jí)膜厚儀傳感器精度,膜厚儀

薄膜是一種特殊的二維材料,由分子、原子或離子沉積在基底表面形成。近年來(lái),隨著材料科學(xué)和鍍膜技術(shù)的不斷發(fā)展,厚度在納米量級(jí)(幾納米到幾百納米范圍內(nèi))的薄膜研究和應(yīng)用迅速增加。與體材料相比,納米薄膜的尺寸很小,表面積與體積的比值增大,因而表面效應(yīng)所表現(xiàn)出來(lái)的性質(zhì)非常突出,對(duì)于光學(xué)性質(zhì)和電學(xué)性質(zhì)等具有許多獨(dú)特的表現(xiàn)。納米薄膜在傳統(tǒng)光學(xué)領(lǐng)域中的應(yīng)用越來(lái)越廣,尤其是在光通訊、光學(xué)測(cè)量、傳感、微電子器件、醫(yī)學(xué)工程等領(lǐng)域有更為廣闊的應(yīng)用前景。

光譜擬合法易于測(cè)量具有應(yīng)用領(lǐng)域,由于使用了迭代算法,因此該方法的優(yōu)缺點(diǎn)在很大程度上取決于所選擇的算法。隨著各種全局優(yōu)化算法的引入,遺傳算法和模擬退火算法等新算法被用于薄膜參數(shù)的測(cè)量。其缺點(diǎn)是不夠?qū)嵱?,該方法需要一個(gè)較好的薄膜的光學(xué)模型(包括色散系數(shù)、吸收系數(shù)、多層膜系統(tǒng)),但是在實(shí)際測(cè)試過(guò)程中,薄膜的色散和吸收的公式會(huì)有出入,尤其是對(duì)于多層膜體系,建立光學(xué)模型非常困難,無(wú)法用公式準(zhǔn)確地表示出來(lái)。在實(shí)際應(yīng)用中只能使用簡(jiǎn)化模型,因此,通常全光譜擬合法不如極值法有效。另外該方法的計(jì)算速度慢也不能滿足快速計(jì)算的要求。白光干涉膜厚測(cè)量技術(shù)可以應(yīng)用于半導(dǎo)體制造中的薄膜厚度控制。

微米級(jí)膜厚儀傳感器精度,膜厚儀

。白光干涉膜厚儀基于薄膜對(duì)白光的反射和透射產(chǎn)生干涉現(xiàn)象,通過(guò)測(cè)量干涉條紋的位置和間距來(lái)計(jì)算出薄膜的厚度。這種儀器在光學(xué)薄膜、半導(dǎo)體、涂層和其他薄膜材料的生產(chǎn)和研發(fā)過(guò)程中具有重要的應(yīng)用價(jià)值。白光干涉膜厚儀的原理是基于薄膜對(duì)白光的干涉現(xiàn)象。當(dāng)白光照射到薄膜表面時(shí),部分光線會(huì)被薄膜反射,而另一部分光線會(huì)穿透薄膜并在薄膜內(nèi)部發(fā)生多次反射和折射。這些反射和折射的光線會(huì)與原始入射光線產(chǎn)生干涉,形成干涉條紋。通過(guò)測(cè)量干涉條紋的位置和間距,可以推導(dǎo)出薄膜的厚度信息。白光干涉膜厚儀在光學(xué)薄膜領(lǐng)域具有廣泛的應(yīng)用。光學(xué)薄膜是一種具有特殊光學(xué)性質(zhì)的薄膜材料,廣泛應(yīng)用于激光器、光學(xué)鏡片、光學(xué)濾波器等光學(xué)元件中。通過(guò)白光干涉膜厚儀可以實(shí)現(xiàn)對(duì)光學(xué)薄膜厚度的精確測(cè)量,保證光學(xué)薄膜元件的光學(xué)性能。此外,白光干涉膜厚儀還可以用于半導(dǎo)體行業(yè)中薄膜材料的生產(chǎn)和質(zhì)量控制,確保半導(dǎo)體器件的性能穩(wěn)定和可靠性。白光干涉膜厚儀還可以應(yīng)用于涂層材料的生產(chǎn)和研發(fā)過(guò)程中。涂層材料是一種在材料表面形成一層薄膜的工藝,用于增強(qiáng)材料的表面性能。通過(guò)白光干涉膜厚儀可以對(duì)涂層材料的厚度進(jìn)行精確測(cè)量,保證涂層的均勻性和穩(wěn)定性,提高涂層材料的質(zhì)量和性能。可測(cè)量大氣壓下薄膜厚度在1納米到1毫米之間。原裝膜厚儀歡迎選購(gòu)

光路長(zhǎng)度越長(zhǎng),分辨率越高,但同時(shí)也更容易受到靜態(tài)振動(dòng)等干擾因素的影響。微米級(jí)膜厚儀傳感器精度

針對(duì)現(xiàn)有技術(shù)的不足,提供一種基于白光干涉法的晶圓膜厚測(cè)量裝置。該裝置包括白光光源、顯微鏡、分束鏡、干涉物鏡、光纖傳輸單元、準(zhǔn)直器、光譜儀、USB傳輸線、計(jì)算機(jī)。光譜儀主要包括六部分,分別是:光纖入口、準(zhǔn)直鏡、光柵、聚焦鏡、區(qū)域檢測(cè)器、帶OFLV濾波器的探測(cè)器。測(cè)量具體步驟為:白光光源發(fā)出白光,經(jīng)由光纖,通過(guò)光纖探頭垂直入射至晶圓表面,樣品薄膜上表面和下表面反射光相干涉形成的干涉譜,由反射光纖探頭接收,再由光纖傳送到光譜儀,光譜儀連續(xù)記錄反射信號(hào),通過(guò)USB線將測(cè)量數(shù)據(jù)傳輸?shù)诫娔X。可以實(shí)現(xiàn)對(duì)晶圓膜厚的無(wú)損測(cè)量,時(shí)間快、設(shè)備小巧、操作簡(jiǎn)單、精度高,適合實(shí)驗(yàn)室檢測(cè)。微米級(jí)膜厚儀傳感器精度