山東微電子納米力學(xué)測(cè)試

來源: 發(fā)布時(shí)間:2024-06-18

微納米材料研究中用到的一些現(xiàn)代測(cè)試技術(shù):電子顯微法,電子顯微技術(shù)是以電子顯微鏡為研究手段來分析材料的一種技術(shù)。電子顯微鏡擁有高于光學(xué)顯微鏡的分辨率,可以放大幾十倍到幾十萬倍的范圍,在實(shí)驗(yàn)研究中具有不可替代的意義,推動(dòng)了眾多領(lǐng)域研究的進(jìn)程。電子顯微技術(shù)的光源為電子束,通過磁場聚焦成像或者靜電場的分析技術(shù)才達(dá)成高分辨率的效果、利用電子顯微鏡可以得到聚焦清晰的圖像, 有利于研究人員對(duì)于實(shí)驗(yàn)結(jié)果進(jìn)行觀察分析。納米力學(xué)測(cè)試是一種用于研究納米尺度材料力學(xué)性質(zhì)的實(shí)驗(yàn)方法。山東微電子納米力學(xué)測(cè)試

山東微電子納米力學(xué)測(cè)試,納米力學(xué)測(cè)試

AFAM 方法提出之后,不少研究者對(duì)方法的準(zhǔn)確度和靈敏度方面進(jìn)行了研究。Hurley 等分析了空氣濕度對(duì)AFAM 定量化測(cè)量結(jié)果的影響。Rabe 等分析了探針基片對(duì)AFAM 定量化測(cè)量的影響。Hurley 等詳細(xì)對(duì)比了AFAM 單點(diǎn)測(cè)試與納米壓痕以及聲表面波譜方法的測(cè)試原理、空間分辨率、適用性及測(cè)試優(yōu)缺點(diǎn)等。Stan 等提出一種雙參考材料的方法,此方法不需要了解針尖的力學(xué)性能,可以在一定程度上提高測(cè)試的準(zhǔn)確度。他們還提出了一種基于多峰接觸的接觸力學(xué)模型,在一定程度上可以提高測(cè)試的準(zhǔn)確度。Turner 等通過嚴(yán)格的理論推導(dǎo)研究了探針不同階彎曲振動(dòng)和扭轉(zhuǎn)振動(dòng)模態(tài)的靈敏度問題。Muraoka提出一種在探針微懸臂末端附加集中質(zhì)量的方法,以提高測(cè)試靈敏度。Rupp 等對(duì)AFAM測(cè)試過程中針尖樣品之間的非線性相互作用進(jìn)行了研究。山東微電子納米力學(xué)測(cè)試?yán)么髷?shù)據(jù)和人工智能技術(shù),優(yōu)化納米力學(xué)測(cè)試結(jié)果分析,提升研究效率。

山東微電子納米力學(xué)測(cè)試,納米力學(xué)測(cè)試

在AFAM 測(cè)試系統(tǒng)開發(fā)方面,Hurley 等開發(fā)了一套基于快速數(shù)字信號(hào)處理的掃頻模式共振頻率追蹤系統(tǒng)。這一測(cè)試系統(tǒng)可以根據(jù)上一像素點(diǎn)的接觸共振頻率自動(dòng)調(diào)整掃描頻率的上下限。隨后,他們又開發(fā)出一套稱為SPRITE(scanning probe resonance image tracking electronics) 的測(cè)試系統(tǒng),可以同時(shí)對(duì)探針兩階模態(tài)的接觸共振頻率和品質(zhì)因子進(jìn)行成像,并較大程度上提高成像速度。Rodriguez 等開發(fā)了一種雙頻共振頻率追蹤(dual frequency resonance tracking,DFRT) 的方法,此種方法應(yīng)用于AFAM 定量化成像中,可以同時(shí)獲得探針的共振頻率和品質(zhì)因子。日本的Yamanaka 等利用PLL(phase locked loop) 電路實(shí)現(xiàn)了UAFM 接觸共振頻率追蹤。

微納米纖維素,微納米纖維素材料在農(nóng)業(yè)、生物醫(yī)用材料等領(lǐng)域的普遍應(yīng)用。微納米纖維素水凝膠表現(xiàn)出各向異性的力學(xué)性能和優(yōu)良溶脹性能,可應(yīng)用于生物醫(yī)學(xué)和機(jī)器人等領(lǐng)域。其在納米尺度上表現(xiàn)出良好的形貌特征和優(yōu)異的力學(xué)性能??辜?xì)菌實(shí)驗(yàn)表明,該復(fù)合超細(xì)水凝膠纖維可有效殺滅陽性和陰性細(xì)菌菌株,同時(shí)對(duì)正常哺乳動(dòng)物細(xì) 胞保持友好性。這種超細(xì)水凝膠微纖維可有效解決微生物威脅人類健康的問題。這種靈活的合成核殼復(fù)合超細(xì)水凝膠微纖維方法,具有重要的生物醫(yī)學(xué)應(yīng)用前景,同時(shí)該方法也可應(yīng)用于材料科學(xué)、組織工程和再生醫(yī)學(xué)等領(lǐng)域。利用納米力學(xué)測(cè)試,研究人員可揭示材料內(nèi)部缺陷、應(yīng)力分布等關(guān)鍵信息。

山東微電子納米力學(xué)測(cè)試,納米力學(xué)測(cè)試

微納米材料力學(xué)性能測(cè)試系統(tǒng)是一種用于機(jī)械工程領(lǐng)域的科學(xué)儀器,于2008年11月18日啟用??v向載荷力和位移。載荷力分辨率:3nN(在施加1μN(yùn)的條件下);較小載荷接觸力:<100nN;較大載荷:10mN;位移分辨率:0.0004nm;較小位移:<0.2nm;較大位移:5μm;熱漂移:<0.05nm/s(在室溫條件下)。 橫向載荷力和位移。載荷力的分辨率:0.5μN(yùn);較小橫向力:<5μN(yùn);較大橫向力:2mN;位移分辨率:3nm;較小位移:<5nm;較大位移:15μm;熱漂移:<0.05nm/s(在室溫條件下)。磨損面積范圍:4μm x 4μm 到 60μm x 60μm;磨損速率:≤180μm/s;縱向載荷范圍:100nN – 1mN。X-Y stage。通過納米力學(xué)測(cè)試,我們可以評(píng)估納米材料在極端環(huán)境下的穩(wěn)定性和耐久性。山東微電子納米力學(xué)測(cè)試

納米力學(xué)測(cè)試結(jié)果有助于優(yōu)化材料設(shè)計(jì),提升產(chǎn)品性能,降低生產(chǎn)成本。山東微電子納米力學(xué)測(cè)試

納米纖維已經(jīng)展現(xiàn)出各種有趣的特性,除了高比表面積-體積比,納米纖維相比于塊狀材料,沿主軸方向有更突出的力學(xué)特性。因此納米纖維在復(fù)合材料、纖維、支架(組織工程學(xué))、藥物輸送、創(chuàng)傷敷料或紡織業(yè)等領(lǐng)域是一種非常有應(yīng)用前景的材料。納米纖維機(jī)械性能(剛度、彈性變形范圍、極限強(qiáng)度、韌性)的定量表征對(duì)理解其在目標(biāo)應(yīng)用中的性能非常重要,而測(cè)量這些參數(shù)需要高度專業(yè)畫的儀器,必須具備以下功能:以亞納米的分辨率測(cè)量非常小的變形;在測(cè)量的時(shí)間量程(例如100 s)內(nèi)在納米級(jí)的位移下保持高度穩(wěn)定的測(cè)量系統(tǒng);以亞納米分辨率測(cè)量微小力;處理(撿取-放置)納米纖維并將其放置在機(jī)械測(cè)試儀器上。山東微電子納米力學(xué)測(cè)試