海南表面微納米力學(xué)測試應(yīng)用

來源: 發(fā)布時間:2024-05-31

FT-NMT03納米力學(xué)測試系統(tǒng)可以配合SEM/FIB原位精確直接地測量納米纖維的力學(xué)特性。微力傳感器加載微力,納米力學(xué)測試結(jié)合高分辨位置編碼器可以對納米纖維進行拉伸、循環(huán)、蠕變、斷裂等形變測試。力-形變(應(yīng)力-應(yīng)變)曲線可以定量的表征納米纖維的材料特性。此外,納米力學(xué)測試結(jié)合樣品架電連接,可以定量表征電-機械性質(zhì)。位置穩(wěn)定性,納米力學(xué)測試對于納米纖維的精確拉伸測試,納米力學(xué)測試系統(tǒng)的位移是測試不穩(wěn)定性的主要來源。圖2展示了FT-NMT03納米力學(xué)測試系統(tǒng)位移的統(tǒng)計學(xué)評價,從中可以找到每一個測試間隔內(nèi)位移導(dǎo)致的不確定性,例如100s內(nèi)為450pm,意思是65%(或95%)的概率,納米力學(xué)測試系統(tǒng)在100s的時間間隔內(nèi)的位移穩(wěn)定性小于±450pm(或±900pm)。納米力學(xué)測試通常在真空或者液體環(huán)境下進行,以保證測試的準確性。海南表面微納米力學(xué)測試應(yīng)用

海南表面微納米力學(xué)測試應(yīng)用,納米力學(xué)測試

力—距離曲線測試分為準靜態(tài)模式和動態(tài)模式,實際應(yīng)用中采用較多的是準靜態(tài)模式下的力-距離曲線測試。由力—距離曲線測試可以獲得樣品表面的力學(xué)性能及黏附的信息。利用接觸力學(xué)模型對力—距離曲線進行擬合,可以獲得樣品表面的彈性模量。力—距離曲線測試與納米壓痕相比,可以施加更小的作用力(nN量級),較好地避免了對生物軟材料的損害,極大地降低了基底對薄膜力學(xué)性能測試的影響。力—距離曲線測試普遍應(yīng)用于聚合物材料和生物材料的納米力學(xué)性能測試,很多研究者利用此方法獲得了細胞的模量信息。力—距離曲線陣列測試可以獲得測試區(qū)域內(nèi)力學(xué)性能的分布,但是分辨率較低,且測試時間較長。另外,力—距離曲線一般只對軟材料才比較有效。圖2 是通過力—距離曲線陣列測試獲得的細胞力學(xué)性能(模量) 的分布。核工業(yè)納米力學(xué)測試應(yīng)用納米力學(xué)測試在材料設(shè)計和產(chǎn)品開發(fā)中發(fā)揮著重要作用,能夠提供關(guān)鍵的力學(xué)性能參數(shù)。

海南表面微納米力學(xué)測試應(yīng)用,納米力學(xué)測試

將近場聲學(xué)和掃描探針顯微術(shù)相結(jié)合的掃描探針聲學(xué)顯微術(shù)是近些年來發(fā)展的納米力學(xué)測試方法。掃描探針聲學(xué)顯微術(shù)有多種應(yīng)用模式,如超聲力顯微術(shù)(ultrasonic force microscopy,UFM)、原子力聲學(xué)顯微術(shù)(atomic force acoustic microscopy,AFAM)、超聲原子力顯微術(shù)(ultrasonic atomic force microscopy,UAFM),掃描聲學(xué)力顯微術(shù)(scanning acoustic force microscopy,SAFM)等。在以上幾種應(yīng)用模式中,以基于接觸共振檢測的AFAM 和UAFM 這兩種方法應(yīng)用較為普遍,有時也將它們統(tǒng)稱為接觸共振力顯微術(shù)(contact resonance force microscopy,CRFM)。

原子力顯微鏡(AFM),原子力顯微鏡(AtomicForce Microscopy,簡稱AFM)是一種常用的納米級力學(xué)性質(zhì)測試方法。它通過在納米尺度下測量材料表面的力與距離之間的關(guān)系,來獲得材料的力學(xué)性質(zhì)信息。AFM的基本工作原理是利用一個具有納米的探針對樣品表面進行掃描,并測量在探針與樣品之間的力的變化。使用AFM可以獲得材料的力學(xué)性質(zhì)參數(shù),如納米硬度、彈性模量和塑性變形等信息。此外,AFM還可以進行納米級別的形貌表征,使得研究人員可以直觀地觀察到材料的表面形貌和結(jié)構(gòu)。通過納米力學(xué)測試,我們可以評估納米材料在極端環(huán)境下的穩(wěn)定性和耐久性。

海南表面微納米力學(xué)測試應(yīng)用,納米力學(xué)測試

納米云紋法,云紋法是在20世紀60年代興起的物體表面全場變形的測量技術(shù)。從上世紀80年代以來,高頻率光柵制作技術(shù)已經(jīng)日趨成熟。目前高精度云紋干涉法通常使用的高密度光柵頻率已達到600~2400線mm,其測量位移靈敏度比傳統(tǒng)的云紋法高出幾十倍甚至上百倍。近年來云紋法的研究熱點已進入微納尺度的變形測量,并出現(xiàn)與各種高分辨率電鏡技術(shù)、掃描探針顯微技術(shù)相結(jié)合的趨勢。顯微幾何云紋法,在光學(xué)顯微鏡下通過調(diào)整放大倍數(shù)將柵線放大到頻率小于40線/mm,然后利用分辨率高的感光膠片分別記錄變形前后的柵線,兩種柵線干涉后即可獲得材料表面納米級變形的云紋。在進行納米力學(xué)測試前,需要對測試樣品進行表面處理和尺寸測量,以確保測試結(jié)果的準確性。半導(dǎo)體納米力學(xué)測試模塊

摩擦學(xué)測試在納米力學(xué)領(lǐng)域具有重要地位,為減少能源損耗提供解決方案。海南表面微納米力學(xué)測試應(yīng)用

納米硬度計主要由移動線圈、加載單元、金剛石壓頭和控制單元4部分組成。壓頭及其所在軸的運動由移動線圈控制,改變線圈電流的大小即可實現(xiàn)壓頭的軸向位移,帶動壓頭垂直壓向試件表面,在試件表面產(chǎn)生壓力。移動線圈設(shè)計的關(guān)鍵在于既要滿足較大量程的需要,還必須有很高的分辨率,以實現(xiàn)納米級的位移和精確測量。壓頭載荷的測量和控制是通過應(yīng)變儀來實現(xiàn)的。應(yīng)變儀發(fā)出的信號再反饋到移動線圈上.如此可進行閉環(huán)控制,以實現(xiàn)限定載荷和壓深痕實驗。整個壓入過程完全由微機自動控制進行??稍诰€測量位移與相應(yīng)的載荷,并建立兩者之間的關(guān)系壓頭大多為金剛石壓頭,常用的壓頭有Berkovich壓頭、Cube Corner壓頭和Conical壓頭。海南表面微納米力學(xué)測試應(yīng)用