冷凍電鏡技術(shù)原理之單顆粒技術(shù):對分散分布的生物大分子分別成像,基于分子結(jié)構(gòu)同一性的假設,對多個圖像進行統(tǒng)計分析,并通過對正、加和平均等圖像操作手段提高信噪比,進一步確認二維圖像之間的空間投影關(guān)系后經(jīng)過三維重構(gòu)獲得生物大分子的三維結(jié)構(gòu)方法。其適合的樣品分子量范圍為80~50MD,Zgao分辨率約0.3nm。利用單顆粒技術(shù)獲得三維重構(gòu)的方法主要包括等價線方法、隨機圓錐重構(gòu)法、隨機初始模型迭代收斂重構(gòu)等方法,其基本目標是獲得二維圖像之間正確的空間投影關(guān)系,從而進行三維重構(gòu)。冷凍電子顯微技術(shù)學解析生物大分子及細胞結(jié)構(gòu)的中心是透射電子顯微鏡成像。汕頭冷凍電鏡技術(shù)應用
冷凍電鏡技術(shù):隨著技術(shù)的不斷進步和人類對于生命科學領域知識的不斷積累,藥物研發(fā)越來越走向理性化,包括法規(guī)體系的建立和優(yōu)化、藥品質(zhì)量控制模式的變遷走向QbD階段?;诮Y(jié)構(gòu)的藥物設計已經(jīng)逐漸成為藥物開發(fā)設計的主流,與此同時冷凍電鏡技術(shù)也在蓬勃發(fā)展。冷凍電鏡單顆粒分析技術(shù)和微晶電子衍射技術(shù)不只能解析近原子分辨率的結(jié)構(gòu),而且能解析傳統(tǒng)結(jié)構(gòu)生物學無法解析的結(jié)構(gòu),幫助確認藥物靶點,拓展可用藥物靶點的研究范圍和完善基于靶點結(jié)構(gòu)的藥物設計。冷凍電子斷層掃描技術(shù)在不久的未來可能提供細胞原位觀察藥物與靶點的作用。連云港快速冷凍顯微鏡技術(shù)服務公司冷凍電鏡技術(shù)既完美契合了結(jié)構(gòu)生物學的基礎研究,又能夠助力加速基于結(jié)構(gòu)的藥物研發(fā)。
冷凍電子顯微技術(shù)的發(fā)展與完善經(jīng)歷了復雜而艱辛的探索,下面,我們將深入解析冷凍電子顯微鏡的工作原理、流程與儀器結(jié)構(gòu),揭開它的廬山真面目。樣品制備:樣品快速冷凍技術(shù):樣品的原位冷凍固定處理是低溫電子顯微鏡標本制備的開始。冷凍電鏡采用的快速冷凍技術(shù)關(guān)鍵在于“快速”。這是由于:采用常規(guī)冷凍手段,水分子會在氫鍵作用下形成冰晶,一來會改變樣品結(jié)構(gòu),二來在成像過程中,冰晶體會產(chǎn)生強烈的電子衍射掩蓋樣品信號。而當冷凍速率足夠快時,水分子在形成晶體之前就會凝固成無定形的玻璃態(tài)冰,具有非晶態(tài)特性,保證了在電子束探測成像的過程中不會對樣品成像造成干擾。冷凍固定時,樣品首先放置在由液氮冷卻的容器中,隨后被快速浸入液態(tài)乙烷中。采用液態(tài)乙烷作為冷凍劑的目的是為了使冷凍速率足夠快,在冷凍過程中,樣品將以每秒104至106K的速度被快速冷卻。生物樣品中的水被玻璃化冷凍后,樣品結(jié)構(gòu)就得到了保持和固定,同時玻璃化冰也不會在真空環(huán)境中揮發(fā),在一定程度上保護了樣品免受電子輻射的損傷。
冷凍電鏡技術(shù)的原理:透射電鏡成像過程中,電子束穿透樣品,將樣品的三維電勢密度分布函數(shù)沿著電子束的傳播方向投影至與傳播方向垂直的二維平面上。1968年,AronKlug發(fā)現(xiàn)ZX截面定理,提出可以通過三維物體不同角度的二維投影在計算機內(nèi)進行三維重構(gòu)來解析獲得物體的三維結(jié)構(gòu)。根據(jù)這一原理,利用透射電鏡獲得生物樣品多個角度的放大電子顯微圖像,即有可能在計算機里重構(gòu)出它的三維空間結(jié)構(gòu)。在冷凍電子顯微學結(jié)構(gòu)解析的具體實踐中,依據(jù)不同生物樣品的性質(zhì)及特點,可以采取不同的顯微鏡成像及三維重構(gòu)方法。目前主要使用的幾種冷凍電子顯微學結(jié)構(gòu)解析方法包括:電子晶體學、單顆粒重構(gòu)技術(shù)、電子斷層掃描重構(gòu)技術(shù)等,它們分別針對不同的生物大分子復合體及亞細胞結(jié)構(gòu)進行解析。冷凍電子顯微技術(shù)主要包括單顆粒冷凍電鏡技術(shù)和冷凍電子斷層掃描技術(shù)。
冷凍電子顯微鏡技術(shù):目前使用的幾種主要的結(jié)構(gòu)解析方法包括:電子晶體學單顆粒重構(gòu)技術(shù)和電子斷層掃描重構(gòu)技術(shù)等。電子晶體學:電子晶體學技術(shù)利用電子顯微鏡的成像和電子衍射的功能,從生物大分子的二維晶體獲取結(jié)構(gòu)信息,解析其三維結(jié)構(gòu)。生物大分子在空間中有序排列,可以形成三維晶體,也可以形成二維晶體對于二維晶體來說,其只在X-Y平面內(nèi)具有平移對稱性,電子波照射到二維晶體上時能夠發(fā)生衍射。根據(jù)電子顯微鏡記錄的二維圖像來確定相位,利用二維晶體的衍射圖譜來確定振幅,從而通過反傅里葉變換計算出大分子的密度投影,之后再利用三維重構(gòu)技術(shù)獲得大分子的三維結(jié)構(gòu)圖,從而解析出生物大分子的三維結(jié)構(gòu)。該方法的特點是解析分辨率較高,可達到近原子分辨率。但獲得蛋白的二維晶體來作為樣品,仍然是一項非常具有挑戰(zhàn)性的工作。冷凍電鏡技術(shù)的獨特優(yōu)勢:更接近天然狀態(tài),不需要蛋白質(zhì)結(jié)晶。溫州冷凍透射電子顯微鏡技術(shù)用途
將冷凍樣品保持低溫放置在透射電子顯微鏡下觀察,從而獲得生物大分子的結(jié)構(gòu),被稱為冷凍電鏡技術(shù)。汕頭冷凍電鏡技術(shù)應用
低溫冷凍透射電鏡技術(shù)的特點:相對于常溫透射電鏡,低溫透射電鏡的優(yōu)勢有:①快速冷凍制樣技術(shù)將樣品固定在玻璃態(tài)的冰層中,避免了水或溶劑結(jié)晶對樣品結(jié)構(gòu)的破壞,能夠保持液相中有機分子自組裝體和化學反應中間體的微觀結(jié)構(gòu),避免了樣品干燥引起的結(jié)構(gòu)變化;②高分子及化學反應體系常常具有非平衡態(tài)結(jié)構(gòu),快速冷凍制樣技術(shù)能夠保持住非平衡態(tài)結(jié)構(gòu),進而得以觀察;③低溫條件能夠盡可能保持有機和高分子等軟物質(zhì)材料的微觀結(jié)構(gòu),明顯減少電子束對樣品的損傷。汕頭冷凍電鏡技術(shù)應用