傳統(tǒng)方法通常無法自適應(yīng)提取特征, 同時需要一定的離線數(shù)據(jù)訓練得到檢測模型, 但目標對象在線場景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓練數(shù)據(jù)的分布可能因隨機噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測結(jié)果的準確性; 其次, 上述方法通常采用基于異常點的檢測算法, 未充分考慮樣本前后的時序關(guān)系, 容易因數(shù)據(jù)微小波動而產(chǎn)生誤報警, 降低檢測結(jié)果的魯棒性; 再次, 為降低誤報警, 這類方法需要反復(fù)調(diào)整報警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機理模型, 可獲得理想診斷和檢測結(jié)果, 但這類方法通常需要提前知道系統(tǒng)運動方程等信息, 對于軸承運行來說, 這類信息通常不易獲知. 近年來, 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征自動提取和識別, 可自適應(yīng)地提取信息豐富和判別能力強的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量輔助數(shù)據(jù)進行模型訓練, 而歷史采集的輔助數(shù)據(jù)與目標對象數(shù)據(jù)可能存在較大不同, 直接訓練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓練過程中未能針對早期故障引發(fā)的狀態(tài)變化而有目的地強化相應(yīng)特征表示. 因此, 深度學習方法在早期故障在線監(jiān)測中的應(yīng)用仍存在較大的提升空間.使用絕緣監(jiān)測設(shè)備來檢測電機繞組和絕緣系統(tǒng)的健康狀況。絕緣降低可能導(dǎo)致繞組短路或絕緣擊穿。常州EOL監(jiān)測數(shù)據(jù)
狀態(tài)監(jiān)測就是給機器體檢,故障診斷就是給機器看病。醫(yī)生給病人看病,首先是進行體征檢查,例如先查體溫,再進行驗血、X光、心電圖、B超、甚至CT等各種理化檢驗,然后根據(jù)檢查結(jié)果和病史,利用醫(yī)生的知識及經(jīng)驗,對病情做出診斷。對機器故障的診斷,類似于醫(yī)生看病,首先對機器的狀態(tài)進行監(jiān)測,例如先看振動值,再進行頻譜、波形、軸心軌跡、趨勢、波德圖等各種檢測分析,然后結(jié)合設(shè)備的原理、結(jié)構(gòu)、歷史狀況等,利用專業(yè)人員的知識及經(jīng)驗,對故障進行綜合分析判斷。1滾動軸承故障振動的診斷方法異步電動機的常見故障主要可以分為定子故障、轉(zhuǎn)子故障及軸承故障。其中軸承故障占70%以上,如果我們有辦法對軸承情況能實時進行監(jiān)測,那么異步電動機故障率會減低。滾動軸承狀態(tài)監(jiān)測和故障診斷的方法有多種,例如振動分析法、油液分析法(磁性法、鐵譜法、光譜法)、聲發(fā)射分析法、光纖診斷法等。各種方法都有自己的特點,其中振動分析法以其實用和相對簡單方便。滾動軸承不同于其它機械零件,其振動信號的頻率范圍很寬,信噪比很低,信號傳遞路途上的衰減量大,因此,提取它的振動特征信息必須采用一些特殊的檢測技術(shù)和處理方法。減振監(jiān)測控制策略電機監(jiān)測需要實時獲取和處理數(shù)據(jù),以及及時發(fā)出警報。要求數(shù)據(jù)采集和處理要高性能的硬件和快速的算法。
電機等振動設(shè)備在運行中,伴隨著一些安全問題,振動數(shù)據(jù)會發(fā)生變化,如果不及時發(fā)現(xiàn),容易導(dǎo)致起火或,造成大量的財產(chǎn)損失,而這些問題具有突發(fā)性和不準確性,難以預(yù)知,應(yīng)對這種情況,需要一種手段去解決。無線振動傳感器直接讀取原始加速度數(shù)據(jù),準確可靠。本傳感器采用無線通訊方式,低功耗設(shè)計,一次性鋰亞電池供電,具有容量大、耐高溫、不宜爆等特點,工作原理:將傳感器分布式安裝在各類電機、風機、振動平臺、回轉(zhuǎn)窯、傳送設(shè)備等需要振動監(jiān)測的設(shè)備上實時采集振動數(shù)據(jù),然后通過無線方式將數(shù)據(jù)發(fā)送給采集端,采集端將數(shù)據(jù)解析、顯示或傳輸。系統(tǒng)能實時在線監(jiān)測出設(shè)備異常,發(fā)出預(yù)警,避免事故發(fā)生。特點(1)實時性:系統(tǒng)實時在線監(jiān)測電機等振動參數(shù),避免了由于電機突然缺相、線圈故障,堵轉(zhuǎn)、固定螺栓松動、負載過高和人為錯誤操作等發(fā)生的事故。(2)便捷性:系統(tǒng)采用無線傳輸方式,傳感器安裝,解決了以往因為空間狹小、不能布線、安裝成本高等問題。(3)可靠性:系統(tǒng)采用先進成熟的傳感技術(shù)和無線傳輸技術(shù),抗干擾力強,傳輸距離遠,讀數(shù)準確,可靠性高。
故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術(shù)搭建模型算法,實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術(shù)搭建模型算法,實現(xiàn)產(chǎn)品和裝備狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。近年來我們提出的標準化平方包絡(luò)和數(shù)學框架以及準算數(shù)均值比數(shù)學框架指引了稀疏測度構(gòu)造的新方向,同時發(fā)現(xiàn)了大量基尼指數(shù)、峭度、香農(nóng)熵等具有等價性能的稀疏測度。基于標準化平方包絡(luò)和數(shù)學框架以及凸優(yōu)化技術(shù),提出了在線更新模型權(quán)重可解釋的機器學習算法,可以利用模型權(quán)重來實時確認故障特征頻率,解決了狀態(tài)監(jiān)測與故障診斷領(lǐng)域傳統(tǒng)機器學習只能輸出狀態(tài),而無法提供故障特征來確認輸出狀態(tài)的難題。在數(shù)控機床中,可以通過監(jiān)測電機電流來評估刀具的狀況。刀具磨損或斷裂通常會導(dǎo)致電流變化。
針對刀具磨損狀態(tài)在實際生產(chǎn)加工過程中難以在線監(jiān)測這個問題,提出一種通過通信技術(shù)獲取機床內(nèi)部數(shù)據(jù),對當前的刀具磨損狀態(tài)進行識別的方法。通過采集機床內(nèi)部實時數(shù)據(jù)并將其與實際加工情景緊密結(jié)合,能直接反映當前的加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡(luò)用于構(gòu)建刀具磨損狀態(tài)識別模型,直接將采集到數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預(yù)測模型,模型在訓練集和在線驗證試驗中的表現(xiàn)都符合預(yù)期。刀具磨損狀態(tài)識別的方法在投入使用時還有一些問題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測得的,而實際加工過程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進行變參數(shù)試驗,考慮加工參數(shù)對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景時,通過獲取當前場景,及時匹配相應(yīng)的預(yù)測模型即可。②本研究中模型是一個固定的模型。今后需要根據(jù)實時的信號以及已知的磨損狀態(tài),對模型進行實時更新,從而在實時監(jiān)測過程中實現(xiàn)自學習,不斷提升模型的精度和預(yù)測效果。工業(yè)產(chǎn)品質(zhì)量的監(jiān)測是保證產(chǎn)品符合標準要求的重要手段,可以提高產(chǎn)品的競爭力和市場信譽。南京EOL監(jiān)測
通過監(jiān)測電機振動的頻率和振幅,可以評估電機軸承和其他旋轉(zhuǎn)部件的狀況。常州EOL監(jiān)測數(shù)據(jù)
隨著電力電子技術(shù)、自動化控制技術(shù)的不斷發(fā)展,電機在工業(yè)生產(chǎn)以及家用電器中得到了大的應(yīng)用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數(shù)的方式進行數(shù)據(jù)的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結(jié)果不準確。有些場合需要進行電機多種參數(shù)監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態(tài)和故障。技術(shù)實現(xiàn)要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉(zhuǎn)速、各相電流、電壓、溫度、輸入、輸出功率和效率進行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進行報警停機,解決現(xiàn)有技術(shù)中監(jiān)測參數(shù)不能定量分析以及無法更加準確、實時的掌握電機運行狀態(tài)和故障的技術(shù)問題。常州EOL監(jiān)測數(shù)據(jù)