電機(jī)馬達(dá)監(jiān)控系統(tǒng)適用于石油、化工、電力、煤炭、冶金、造紙、水泥等行業(yè),可以實(shí)時(shí)對(duì)低壓電動(dòng)機(jī)的運(yùn)行狀態(tài)進(jìn)行監(jiān)測(cè),對(duì)電機(jī)各類(lèi)故障進(jìn)行監(jiān)測(cè)并存儲(chǔ)故障信息,可以生成各類(lèi)實(shí)時(shí)曲線(電壓曲線、電流曲線等),為電機(jī)節(jié)能提供依據(jù),并可實(shí)現(xiàn)電機(jī)節(jié)能管理。系統(tǒng)特點(diǎn):1實(shí)時(shí)監(jiān)測(cè)電機(jī)回路石化、電力、水泥等電機(jī)用量大戶(hù),需要對(duì)電機(jī)進(jìn)行實(shí)時(shí)監(jiān)測(cè),監(jiān)測(cè)內(nèi)容包括電機(jī)的電流、電壓、電能、頻率、電機(jī)狀態(tài)(起動(dòng)、停止、報(bào)警、故障)等。在要求較高的場(chǎng)所還要對(duì)工藝參數(shù)進(jìn)行監(jiān)測(cè),例如溫度、壓力等。本系統(tǒng)不僅可以監(jiān)測(cè)電機(jī)電壓、電流還能做能耗統(tǒng)計(jì),工藝參數(shù)監(jiān)測(cè),可以大幅提高企業(yè)自動(dòng)化程度。2集中監(jiān)控,利于節(jié)能馬達(dá)監(jiān)控系統(tǒng)對(duì)用電大戶(hù)電機(jī)進(jìn)行實(shí)時(shí)能耗監(jiān)測(cè),監(jiān)測(cè)到的數(shù)據(jù)可以作為節(jié)能依據(jù),并可通過(guò)系統(tǒng)進(jìn)行節(jié)能控制,利于電機(jī)節(jié)能應(yīng)用。3提高自動(dòng)化水平.電機(jī)監(jiān)控系統(tǒng)是應(yīng)用電力自動(dòng)化技術(shù)、計(jì)算機(jī)技術(shù)和信息傳輸技術(shù),集保護(hù)、監(jiān)測(cè)、控制、通信等功能于一體的綜合系統(tǒng),使用溫度傳感器來(lái)監(jiān)測(cè)電機(jī)各個(gè)部件溫度。過(guò)高的溫度表明電機(jī)運(yùn)行不正常,由于負(fù)載過(guò)大、繞組問(wèn)題等原因。寧波減振監(jiān)測(cè)應(yīng)用
傳統(tǒng)方法通常無(wú)法自適應(yīng)提取特征, 同時(shí)需要一定的離線數(shù)據(jù)訓(xùn)練得到檢測(cè)模型, 但目標(biāo)對(duì)象在線場(chǎng)景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機(jī)噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測(cè)結(jié)果的準(zhǔn)確性; 其次, 上述方法通常采用基于異常點(diǎn)的檢測(cè)算法, 未充分考慮樣本前后的時(shí)序關(guān)系, 容易因數(shù)據(jù)微小波動(dòng)而產(chǎn)生誤報(bào)警, 降低檢測(cè)結(jié)果的魯棒性; 再次, 為降低誤報(bào)警, 這類(lèi)方法需要反復(fù)調(diào)整報(bào)警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機(jī)理模型, 可獲得理想診斷和檢測(cè)結(jié)果, 但這類(lèi)方法通常需要提前知道系統(tǒng)運(yùn)動(dòng)方程等信息, 對(duì)于軸承運(yùn)行來(lái)說(shuō), 這類(lèi)信息通常不易獲知. 近年來(lái), 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征自動(dòng)提取和識(shí)別, 可自適應(yīng)地提取信息豐富和判別能力強(qiáng)的深度特征, 因此具有較好的普適性. 但是, 這類(lèi)方法一方面需要大量輔助數(shù)據(jù)進(jìn)行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標(biāo)對(duì)象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測(cè)的特征表示效果; 另一方面, 在訓(xùn)練過(guò)程中未能針對(duì)早期故障引發(fā)的狀態(tài)變化而有目的地強(qiáng)化相應(yīng)特征表示. 因此, 深度學(xué)習(xí)方法在早期故障在線監(jiān)測(cè)中的應(yīng)用仍存在較大的提升空間.杭州混合動(dòng)力系統(tǒng)監(jiān)測(cè)系統(tǒng)電機(jī)監(jiān)測(cè)系統(tǒng)的目標(biāo)是實(shí)現(xiàn)預(yù)測(cè)性維護(hù),準(zhǔn)確地預(yù)測(cè)電機(jī)何時(shí)會(huì)出現(xiàn)是一個(gè)復(fù)雜的問(wèn)題,需要綜合考慮多個(gè)因素。
針對(duì)刀具磨損狀態(tài)在實(shí)際生產(chǎn)加工過(guò)程中難以在線監(jiān)測(cè)這個(gè)問(wèn)題,提出一種通過(guò)通信技術(shù)獲取機(jī)床內(nèi)部數(shù)據(jù),對(duì)當(dāng)前的刀具磨損狀態(tài)進(jìn)行識(shí)別的方法。通過(guò)采集機(jī)床內(nèi)部實(shí)時(shí)數(shù)據(jù)并將其與實(shí)際加工情景緊密結(jié)合,能直接反映當(dāng)前的加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡(luò)用于構(gòu)建刀具磨損狀態(tài)識(shí)別模型,直接將采集到數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預(yù)測(cè)模型,模型在訓(xùn)練集和在線驗(yàn)證試驗(yàn)中的表現(xiàn)都符合預(yù)期。刀具磨損狀態(tài)識(shí)別的方法在投入使用時(shí)還有一些問(wèn)題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測(cè)得的,而實(shí)際加工過(guò)程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進(jìn)行變參數(shù)試驗(yàn),考慮加工參數(shù)對(duì)于刀具磨損的影響,并針對(duì)常用的一些加工場(chǎng)景,建立不同的模型庫(kù)。變換加工場(chǎng)景時(shí),通過(guò)獲取當(dāng)前場(chǎng)景,及時(shí)匹配相應(yīng)的預(yù)測(cè)模型即可。②本研究中模型是一個(gè)固定的模型。今后需要根據(jù)實(shí)時(shí)的信號(hào)以及已知的磨損狀態(tài),對(duì)模型進(jìn)行實(shí)時(shí)更新,從而在實(shí)時(shí)監(jiān)測(cè)過(guò)程中實(shí)現(xiàn)自學(xué)習(xí),不斷提升模型的精度和預(yù)測(cè)效果。
電機(jī)抖動(dòng)是指電機(jī)在運(yùn)行過(guò)程中發(fā)生的不正常震動(dòng),可能會(huì)導(dǎo)致機(jī)器故障和停機(jī)時(shí)間增加,進(jìn)而影響生產(chǎn)效率和產(chǎn)品質(zhì)量。常見(jiàn)的電機(jī)抖動(dòng)原因包括軸承損壞、不平衡、軸向偏移、電機(jī)定子或轉(zhuǎn)子損傷等。為了監(jiān)測(cè)大型電機(jī)設(shè)備的健康情況,可以采用以下方法:振動(dòng)監(jiān)測(cè):通過(guò)振動(dòng)傳感器安裝在電機(jī)上,實(shí)時(shí)監(jiān)測(cè)電機(jī)振動(dòng)情況,如果振動(dòng)超過(guò)正常范圍,則可以發(fā)出警報(bào)并停機(jī),以防止設(shè)備損壞。溫度監(jiān)測(cè):通過(guò)溫度傳感器監(jiān)測(cè)電機(jī)內(nèi)部和外部的溫度變化,如果發(fā)現(xiàn)異常的溫度升高,可能表明電機(jī)存在故障。潤(rùn)滑油監(jiān)測(cè):通過(guò)監(jiān)測(cè)電機(jī)內(nèi)部的潤(rùn)滑油質(zhì)量和油位,及時(shí)發(fā)現(xiàn)油中雜質(zhì)和油位不足等問(wèn)題,防止設(shè)備損壞。電流監(jiān)測(cè):通過(guò)電流傳感器監(jiān)測(cè)電機(jī)的電流變化,可以檢測(cè)電機(jī)是否存在負(fù)載過(guò)重、不平衡等問(wèn)題,及時(shí)采取措施。聲音監(jiān)測(cè):通過(guò)麥克風(fēng)或聲音傳感器監(jiān)測(cè)電機(jī)的聲音,可以判斷電機(jī)是否存在異響和雜音等異常情況,及時(shí)排除問(wèn)題。以上方法可以結(jié)合一起使用,形成一個(gè)完整的電機(jī)健康監(jiān)測(cè)系統(tǒng),有效地預(yù)防和解決電機(jī)抖動(dòng)等問(wèn)題,提高設(shè)備的穩(wěn)定性和可靠性。設(shè)備監(jiān)測(cè)可以滿足對(duì)部件疲勞程度診斷、機(jī)械摩擦磨損、機(jī)械沖擊、部件過(guò)熱等健康狀況問(wèn)題的實(shí)時(shí)預(yù)警。
電機(jī)監(jiān)控系統(tǒng)適用于石油、化工、電力、煤炭、冶金、造紙、水泥等行業(yè),可以實(shí)時(shí)對(duì)低壓電動(dòng)機(jī)的運(yùn)行狀態(tài)進(jìn)行監(jiān)測(cè),對(duì)電機(jī)各類(lèi)故障進(jìn)行監(jiān)測(cè)并存儲(chǔ)故障信息,可以生成各類(lèi)實(shí)時(shí)曲線(電壓曲線、電流曲線等),為電機(jī)節(jié)能提供依據(jù),并可實(shí)現(xiàn)電機(jī)節(jié)能管理。系統(tǒng)特點(diǎn)1)實(shí)時(shí)監(jiān)測(cè)電機(jī)回路石化、電力、水泥等電機(jī)用量大戶(hù),需要對(duì)電機(jī)進(jìn)行實(shí)時(shí)監(jiān)測(cè),監(jiān)測(cè)內(nèi)容包括電機(jī)的電流、電壓、電能、頻率、電機(jī)狀態(tài)(起動(dòng)、停止、報(bào)警、故障)等。在要求較高的場(chǎng)所還要對(duì)工藝參數(shù)進(jìn)行監(jiān)測(cè),例如溫度、壓力等。本系統(tǒng)不僅可以監(jiān)測(cè)電機(jī)電壓、電流還能做能耗統(tǒng)計(jì),工藝參數(shù)監(jiān)測(cè),可以大幅提高企業(yè)自動(dòng)化程度。2)集中監(jiān)控,利于節(jié)能馬達(dá)監(jiān)控系統(tǒng)對(duì)用電大戶(hù)電機(jī)進(jìn)行實(shí)時(shí)能耗監(jiān)測(cè),監(jiān)測(cè)到的數(shù)據(jù)可以作為節(jié)能依據(jù),并可通過(guò)系統(tǒng)進(jìn)行節(jié)能控制,利于電機(jī)節(jié)能應(yīng)用。3)提高自動(dòng)化水平.電機(jī)監(jiān)控系統(tǒng)是應(yīng)用電力自動(dòng)化技術(shù)、計(jì)算機(jī)技術(shù)和信息傳輸技術(shù),集保護(hù)、監(jiān)測(cè)、控制、通信等功能于一體的綜合系統(tǒng),隨著技術(shù)的不斷進(jìn)步,電機(jī)監(jiān)測(cè)系統(tǒng)的效能和適用范圍將逐漸提高。杭州減振監(jiān)測(cè)技術(shù)
電機(jī)驅(qū)動(dòng)的生產(chǎn)線。同時(shí)監(jiān)測(cè)多個(gè)電機(jī)的狀態(tài),協(xié)調(diào)故障診斷和預(yù)測(cè)性維護(hù),增加了監(jiān)測(cè)的復(fù)雜性。寧波減振監(jiān)測(cè)應(yīng)用
深度學(xué)習(xí)技術(shù)已經(jīng)在滾動(dòng)軸承故障監(jiān)測(cè)和診斷領(lǐng)域取得了成功應(yīng)用, 但面對(duì)不停機(jī)情況下的早期故障在線監(jiān)測(cè)問(wèn)題, 仍存在著早期故障特征表示不充分、誤報(bào)警率高等不足. 為解決上述問(wèn)題, 本文從時(shí)序異常檢測(cè)的角度出發(fā), 提出了一種基于深度遷移學(xué)習(xí)的早期故障在線檢測(cè)方法. 首先, 提出一種面向多域遷移的深度自編碼網(wǎng)絡(luò), 通過(guò)構(gòu)建具有改進(jìn)的比較大均值差異正則項(xiàng)和Laplace正則項(xiàng)的損失函數(shù), 在自適應(yīng)提取不同域數(shù)據(jù)的公共特征表示同時(shí), 提高正常狀態(tài)和早期故障狀態(tài)之間特征的差異性; 基于該特征表示, 提出一種基于時(shí)序異常模式的在線檢測(cè)模型, 利用離線軸承正常狀態(tài)的排列熵值構(gòu)建報(bào)警閾值, 實(shí)現(xiàn)在線數(shù)據(jù)中異常序列的快速匹配, 同時(shí)提高在線檢測(cè)結(jié)果的可靠性. 在XJTU-SY數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明, 與現(xiàn)有代表性早期故障檢測(cè)方法相比, 本文方法具有更好的檢測(cè)實(shí)時(shí)性和更低的誤報(bào)警數(shù).寧波減振監(jiān)測(cè)應(yīng)用