南通性能監(jiān)測特點

來源: 發(fā)布時間:2023-09-11

柴油機狀態(tài)監(jiān)測與故障診斷系統(tǒng)是一個集數(shù)據(jù)采集與分析、狀態(tài)監(jiān)測、故障診斷為一體的多任務處理系統(tǒng),可實現(xiàn)柴油機監(jiān)測、保護、分析、診斷等功能。包括數(shù)據(jù)采集與工況監(jiān)測、活塞缸套磨損監(jiān)測分析、主軸承磨損狀態(tài)監(jiān)測分析、氣閥間隙異常監(jiān)測分析和瞬時轉速監(jiān)測分析等各種功能。信號分析、特征提取及診斷原理是每個監(jiān)測診斷子功能的**部分,各子功能都有相應的信號分析與特征提取方法,包括信號預處理、時域、頻域分析、小波分析等,自動形成反映柴油機運行狀態(tài)的特征量,為系統(tǒng)的診斷推理提供信息來源。采用模糊聚類理論來檢驗特征參量的有效性、建立故障標準征兆群,并運用模糊貼近度來實施故障類型的診斷識別?;谌斯ど窠浘W(wǎng)絡的診斷方法簡單處理單元連接而成的復雜的非線性系統(tǒng),具有學習能力,自適應能力,非線性逼近能力等。故障診斷的任務從映射角度看就是從征兆到故障類型的映射。用ANN技術處理故障診斷問題,不僅能進行復雜故障診斷模式的識別,還能進行故障嚴重性評估和故障預測,由于ANN能自動獲取診斷知識,使診斷系統(tǒng)具有自適應能力。電機智能監(jiān)測和運維,其預測效果和工程造價還未達到市場接受程度。南通性能監(jiān)測特點

南通性能監(jiān)測特點,監(jiān)測

隨著科技發(fā)展, 各類工程設備的工作和運行環(huán)境變得越來越復雜. 作為機械設備的關鍵零部件, 滾動軸承在長期大載荷、強沖擊等復雜工況下, 極易產生各種故障, 導致機械工作狀況惡化. 針對軸承的故障預測與健康管理技術應運而生. 若能在故障發(fā)生初期即進行準確、可靠的檢測和診斷, 則有助于進行及時維修, 避免嚴重事故的發(fā)生. 早期故障檢測已成為PHM的關鍵技術環(huán)節(jié)之一. 近年來, 隨著傳感技術和機器學習技術的快速發(fā)展, 數(shù)據(jù)驅動的智能化故障檢測和診斷技術受到更多人的關注. 如何利用歷史采集的狀態(tài)監(jiān)控數(shù)據(jù)、提高目標軸承早期故障檢測結果的準確性和穩(wěn)定性成為研究熱點和難點, 具有明確的學術價值和應用需求.本文關注的是不停機情況下的早期故障在線檢測問題. 這種方式有助于實時評估軸承工作狀態(tài), 避免因等待停機檢查而產生延誤、造成經濟損失, 因此對早期故障的在線檢測越來越受到工業(yè)界的重視。嘉興EOL監(jiān)測特點設備狀態(tài)監(jiān)測是通過測定各類參數(shù),并進行分析處理,根據(jù)分析處理結果判定設備狀態(tài)。

南通性能監(jiān)測特點,監(jiān)測

任何設備在故障發(fā)生之前都會出現(xiàn)一些異常現(xiàn)象或癥狀,如振動偏大,有異常噪音等。持續(xù)狀態(tài)監(jiān)測在預測性維護實踐中起著重要作用,而關鍵的監(jiān)測參數(shù)是振動。設備振動揭示了對組件問題的重要見解,這些問題可能會降低流程質量并導致生產停工。通過油溫升高可能是由于軸承運行狀態(tài)異常,也可能是室溫高、散熱慢、潤滑油枯度偏高或運行時間較長等原因。因此,在判斷時可能出現(xiàn)兩類決策錯誤;一是把實際處于異常狀態(tài)的機器誤認為正常狀態(tài),二是把實際處于正常狀態(tài)的機器錯認為異常狀態(tài)。如果同時用幾個特征,如油溫.潤滑油分析和噪聲來監(jiān)視機器主軸承的運行狀態(tài),判斷就較為可靠。由此可見,正確的識別理論是十分重要的。遠程終端廣泛應用于工業(yè)互聯(lián)網(wǎng)、分布式數(shù)據(jù)采集、設備狀態(tài)的在線監(jiān)測,能夠進行前端數(shù)據(jù)清洗和邊緣計算,通過對歷史數(shù)據(jù)趨勢分析、設備數(shù)據(jù)機理分析、統(tǒng)計分析等大數(shù)據(jù)分析,對設備的狀態(tài)有效可靠的健康狀態(tài)評判,從而切實有效的提高設備的維護能力。遠程終端可實現(xiàn)對設備狀態(tài)的自檢,分析計量故障等信息,及時發(fā)現(xiàn)計量異?!,F(xiàn)場監(jiān)測箱開門、斷電、設備運行等異常信息也能夠主動發(fā)送報警信息到監(jiān)測中心,實現(xiàn)設備在線監(jiān)診的準確性、完整性、及時性和可靠性。

基于交流電機的特征量:通過故障機理分析可知,交流電機運行過程中,其故障與否必然表現(xiàn)為一些特征參量的變化,根據(jù)診斷需要,選擇有代表性的特征參量為該設備在線監(jiān)測的被測信號,準確地提取這些故障特征量,這是故障診斷的關鍵。故障特征量,特別是反映早期故障征兆的信號往往比較弱,而相應的背景噪聲比較弱,常規(guī)的監(jiān)測方法,因受傳感器的準確性、微處理器的速度、A/D轉換的分辨率與轉換速度等硬件條件的限制,以及一般的數(shù)據(jù)處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測量手段與信號處理方法。例如小波變換原理的應用。電機故障的現(xiàn)代分析方法:基于信號變換的診斷方法電機設備的許多故障信息是以調制的形式存在于所監(jiān)測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進行解調處理,就能方便地獲得故障特征信息,以確定電機設備所發(fā)生的故障類型。智能電機監(jiān)測系統(tǒng)選擇傳感器采集旋轉設備的溫度、振動數(shù)據(jù),分析變化趨勢以判斷設備情況。

南通性能監(jiān)測特點,監(jiān)測

低信噪比微弱信號特征早期故障的信號處理。早期故障信息具有明顯的低信噪比微弱信號的特征,為實現(xiàn)早期故障有效分析,涉及方法包括:多傳感系統(tǒng)檢測及信息融合,非平穩(wěn)及非線性信號處理,故障征兆量和損傷征兆量信號分析,噪聲規(guī)律與特點分析,以及相關數(shù)據(jù)挖掘、粗糙集等方法。故障預測模型構建。構建基于智能信息系統(tǒng)的設備早期故障預測模型,這類模型大致有兩個途徑,分別是物理信息預測模型以及數(shù)據(jù)信息預測模型,或構建這兩類預測模型相融合的預測模型。運行狀態(tài)劣化的相關評價參數(shù)、模式及準則。如表征設備狀態(tài)發(fā)展的參數(shù)及特征模式,狀態(tài)發(fā)展評價準則及條件,面向安全保障的決策理論方法,穩(wěn)定性、可靠性及維修性評估依據(jù)及判據(jù)等。物聯(lián)網(wǎng)聲學監(jiān)控系統(tǒng)以音頻數(shù)據(jù),輔以其他設備參數(shù),通過物聯(lián)網(wǎng)技術實現(xiàn)設備狀態(tài)的遠程感知,基于AI神經網(wǎng)絡技術,計算并提取設備音頻特征,從而實現(xiàn)設備運行狀態(tài)的實時評估與故障的早期識別。幫助企業(yè)用戶提升生產效率,保證生產安全,優(yōu)化生產決策。設備的故障監(jiān)測診斷技術是利用科學的檢測方法和現(xiàn)代化技術手段,對設備目前的運行狀態(tài)進行監(jiān)測和排查。嘉興EOL監(jiān)測特點

故障預測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎,實現(xiàn)產品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預測。南通性能監(jiān)測特點

動力裝備全壽命周期監(jiān)測診斷方面:實現(xiàn)了支持物聯(lián)網(wǎng)的智能信息采集與管理、全生命周期動態(tài)自適應監(jiān)測、早期非線性故障特征提取。優(yōu)化重構出綜合體現(xiàn)裝備運行工況及表現(xiàn)的新參數(shù),提高異常狀態(tài)辨識的適應性與可靠性,基于運行過程信息反映裝備劣化趨勢與故障發(fā)展規(guī)律,來提高故障早期辨識能力。動力裝備全生命周期性能優(yōu)化服務方面:提供了轉子全息動平衡快速響應與服務支持、以全息譜的失衡故障確診、動力裝備轉子和軸系平衡配重方案優(yōu)化?;谖锫?lián)網(wǎng)和網(wǎng)絡化監(jiān)測診斷將產品監(jiān)測診斷與運行服務支持有機集成一體,在應用中實現(xiàn)動力裝備常見故障診斷準確率達80%以上??蓱糜陲L力大電機、空壓機、氮壓機等大型動力裝備的集群化診斷領域。提供了基于物聯(lián)網(wǎng)的動力裝備全生命周期監(jiān)測與服務支持創(chuàng)新模式,提供了其生命周期的遠程監(jiān)測診斷與維護等專業(yè)化服務。南通性能監(jiān)測特點