Nanoscribe的雙光子聚合技術具有極高設計自由度和超高精度的特點,結合具備生物兼容特點的光敏樹脂和生物材料,開發(fā)并制作真正意義上的高精度3D微納結構,適用于生命科學領域的應用,如設計和定制微型生物醫(yī)學設備的原型制作。布魯塞爾自由大學的光子學研究小組(B-PHOT)的科學家們正在通過使用Nanoscribe雙光子聚合技術(2PP)將光波導漏斗3D打印到光纖末端上來攻克將具有不同模場幾何形狀的兩個元件之間的光束進行高效和穩(wěn)健耦合這個難題。這些錐形光束漏斗可調整SMF的模式場,以匹配光子芯片上光波導模式場。Nanoscribe的2PP技術將可調整模場的錐形體作為階躍折射率光波導光束。激光增材制造是一種高效、精確的制造技術。北京微納光刻增材制造工藝
采用增材制造技術的情況下,導管的設計空間得以提升,例如可以設計為擁有螺旋形狀的結構,可以將導管橫截面設計為多邊形,也可以在部件內集成多個導管,至少一個可具有圓形橫截面,還可以再導管內表面上制造一組凸起的表面特征,這組凸起的表面特征可以延伸到導管的內部區(qū)域中。與傳統(tǒng)設計及制造方式相比,3D打印導管可以設計為復雜的形狀、輪廓和橫截面,這是使用常規(guī)減法制造技術(例如,鉆孔)無法實現(xiàn)的。在設計時可以將冷卻部件設計成更接近理想的幾何形狀,從而改進流體系統(tǒng)的熱性能。北京德國增材制造PPGT影響增材制造技術的因素你了解嗎?
QuantumXshape作為理想的快速成型制作工具,可實現(xiàn)通過簡單工作流程進行高精度和高設計自由度的制作。作為2019年推出的頭一臺雙光子灰度光刻(2GL®)系統(tǒng)QuantumX的同系列產品,QuantumXshape提升了3D微納加工能力,即完美平衡精度和速度以實現(xiàn)高精度增材制造,以達到高水平的生產力和打印質量。總而言之,工業(yè)級QuantumX打印系統(tǒng)系列提供了從納米到中觀尺寸結構的非常先進的微制造工藝,適用于晶圓級批量加工。作為全球頭一臺雙光子灰度光刻激光直寫系統(tǒng),QuantumX可以打印出具有出色形狀精度和光學質量表面的高精度微納光學聚合物母版,可適用于批量生產的流水線工業(yè)程序,例如注塑,熱壓花和納米壓印等加工流程,從而拓展微納加工工業(yè)領域的應用。2GL與這些批量生產流水線工業(yè)程序的結合得益于新技術的亞微米分辨率和靈活性的特點,同時縮短創(chuàng)新微納光學器件(如衍射和折射光學器件)的整體制造時間。Nanoscribe雙光子聚合技術所具有的高設計自由度,可以在各種預先構圖的基板上實現(xiàn)波導和混合折射衍射光學器件等3D微納加工制作。結合Nanoscribe公司的高精度定位系統(tǒng),可以按設計需要精確地集成復雜的微納結構。
Nanoscribe是一家德國雙光子增材制造系統(tǒng)制造商,2019年6月25日,南極熊從外媒獲悉,該公司近日推出了一款新型的機器QuantumX。該系統(tǒng)使用雙光子光刻技術制造納米尺寸的折射和衍射微光學元件,其尺寸可小至200微米。根據(jù)Nanoscribe的聯(lián)合創(chuàng)始人兼CSOMichaelThiel博士的說法,“Beer's定律對當今的無掩模光刻設備施加了強大的限制,QuantumX采用雙光子灰度光刻技術,克服了這些限制,提供了前所未有的設計自由度和易用性,我們的客戶正在微加工的前沿工作。“PhotonicProfessionalGT是Nanoscribe此前推出的一款產品,在科學研究中得到了較廣的應用,并在哈佛大學納米系統(tǒng)中心,加州理工學院,倫敦帝國理工學院,蘇黎世聯(lián)邦理工大學和慶應義塾大學使用。Nanoscribe在中國的子公司納糯三維科技(上海)有限公司為您淺析增材制造技術在制造業(yè)中的特點與應用。
為了制作由3D工程細胞微環(huán)境制成的體外細胞培養(yǎng)物,科學家們利用雙光子聚合技術(2PP)來制造模擬腦血管幾何形狀的仿生3D支架,該仿生幾何結構影響膠質母細胞瘤細胞及其定植機制。在該實驗中,細胞可以在定制3D支架幾何結構的引導下以受控方式生長。只有在強聚焦的激光焦點處才能發(fā)生雙光子吸收的光聚合反應可實現(xiàn)在亞微米范圍內打印**精細的3D特征結構。此外,這種增材制造技術可在微米級別實現(xiàn)高度三維設計自由度,并以比較高精度模擬三維細胞微環(huán)境。走進Nanoscribe在中國的子公司納糯三維科技(上海)有限公司學習增材制造技術。天津TPP增材制造技術
增材制造輪在性能方面也表現(xiàn)出色。北京微納光刻增材制造工藝
為了制作由3D工程細胞微環(huán)境制成的體外細胞培養(yǎng)物,科學家們利用雙光子聚合技術(2PP)來制造模擬腦血管幾何形狀的仿生3D支架,該仿生幾何結構影響膠質母細胞瘤細胞及其定植機制。在該實驗中,細胞可以在定制3D支架幾何結構的引導下以受控方式生長。只有在強聚焦的激光焦點處才能發(fā)生雙光子吸收的光聚合反應可實現(xiàn)在亞微米范圍內打印極其精細的3D特征結構。此外,這種增材制造技術可在微米級別實現(xiàn)高度三維設計自由度,并以比較高精度模擬三維細胞微環(huán)境。北京微納光刻增材制造工藝