浙江目標(biāo)跟蹤應(yīng)用

來源: 發(fā)布時間:2024-12-17

在深度學(xué)習(xí)中,解決訓(xùn)練數(shù)據(jù)不足常用的一個技巧是“預(yù)訓(xùn)練-微調(diào)”(Pretraining-finetune),即大數(shù)據(jù)集上面預(yù)訓(xùn)練模型,然后在小數(shù)據(jù)集上去微調(diào)權(quán)重。但是,在訓(xùn)練數(shù)據(jù)極其稀少的時候(只有個位數(shù)的訓(xùn)練圖片),這個技巧是無法奏效的。圖2展示了一個檢測模型預(yù)訓(xùn)練過后,在單張訓(xùn)練圖片上微調(diào)的過程:盡管訓(xùn)練集上逐漸收斂,但是檢測器仍無法檢測出測試圖片中的物體。這反映出了“預(yù)訓(xùn)練-微調(diào)”框架的泛化能力不足。利用SpeedDP經(jīng)過大量的數(shù)據(jù)訓(xùn)練后,機(jī)器就能夠精確檢測跟蹤圖像中的物體。RK3588圖像處理板是我司自主研發(fā)的目標(biāo)跟蹤板,該板卡采用國產(chǎn)高性能CPU,搭載自研目標(biāo)跟蹤及跟蹤算法。浙江目標(biāo)跟蹤應(yīng)用

目標(biāo)跟蹤

目標(biāo)檢測和跟蹤是計算機(jī)視覺領(lǐng)域中的重要任務(wù)之一。隨著深度學(xué)習(xí)的興起,YOLO(You Only Look Once)算法在目標(biāo)檢測和跟蹤領(lǐng)域引起了廣關(guān)注。YOLO算法是一種在實時目標(biāo)檢測和跟蹤領(lǐng)域具有重要地位的算法。通過引入卷積神經(jīng)網(wǎng)絡(luò)和一系列先進(jìn)技術(shù),YOLO算法在速度和準(zhǔn)確性方面取得了明顯的進(jìn)展。然而,仍然有一些挑戰(zhàn)需要解決,如目標(biāo)尺度變化、小目標(biāo)檢測和復(fù)雜背景干擾等。隨著研究的不斷深入和技術(shù)的不斷發(fā)展,YOLO算法有望在實時目標(biāo)檢測和跟蹤領(lǐng)域發(fā)揮更大的作用。可靠目標(biāo)跟蹤好選擇國內(nèi)有哪些廠家可以提供全國產(chǎn)化的圖像識別模塊?

浙江目標(biāo)跟蹤應(yīng)用,目標(biāo)跟蹤

基于視頻目標(biāo)檢測和跟蹤的一般流程是:通過目標(biāo)檢測,找到目標(biāo);對目標(biāo)特征進(jìn)行描述,初步估計目標(biāo)的運動矢量;根據(jù)運動狀態(tài),進(jìn)入目標(biāo)跟蹤,對傳感器的姿態(tài),比如水平方位、垂直方位和焦距等進(jìn)行調(diào)整;跟蹤到目標(biāo)后,對目標(biāo)特征進(jìn)行更新,并對目標(biāo)的運動進(jìn)行預(yù)測后,進(jìn)入下一輪的跟蹤過程。目標(biāo)跟蹤檢測與跟蹤涉及到的技術(shù)細(xì)節(jié)很多?;垡暪怆婇_發(fā)的高性能目標(biāo)跟蹤圖像跟蹤板在自研目標(biāo)跟蹤算法的作用下,能夠?qū)崿F(xiàn)高精度低延遲的視頻目標(biāo)鎖定跟蹤。

如今,無人機(jī)在我們生活中的應(yīng)用越來越廣。例如無人機(jī)巡檢安防領(lǐng)域,無人機(jī)能夠到達(dá)人無法觸及的一些角度,能夠很大程度上擴(kuò)大安防檢查的覆蓋面。在工地、電力、化工等行業(yè),晚上巡檢是必不可少的環(huán)節(jié),并且晚上巡檢還能發(fā)現(xiàn)白天無法看到的一些問題,在白天,一般的相機(jī)效果很好,能夠看到非常清晰的監(jiān)控畫面,但是到了晚上,就心有余而力不足。這是因為以前大多數(shù)相機(jī)都是可見光相機(jī),在晚上光源不佳時,就會出現(xiàn)成像模糊、漆黑。這種解決辦法是采用紅外熱像儀傳感器,即使在漆黑的夜晚,通過紅外成像也能展現(xiàn)出清晰的畫面。工程師以RK3399PRO核心板為基礎(chǔ)進(jìn)行定制開發(fā),讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。

浙江目標(biāo)跟蹤應(yīng)用,目標(biāo)跟蹤

目標(biāo)跟蹤是在首幀中給定待跟蹤目標(biāo)的情況下,對目標(biāo)進(jìn)行特征提取,對感興趣區(qū)域進(jìn)行分析;然后在后續(xù)圖像中找到相似的特征和感興趣區(qū)域,并對目標(biāo)在下一幀中的位置進(jìn)行預(yù)測。作為計算機(jī)視覺領(lǐng)域的一個熱點研究方向,目標(biāo)跟蹤一直都是一項具有挑戰(zhàn)性的工作。目標(biāo)跟蹤技術(shù)在導(dǎo)彈制導(dǎo)、智能監(jiān)控系統(tǒng)、視頻檢索、無人駕駛、人機(jī)交互和工業(yè)機(jī)器人等領(lǐng)域具有重要的作用。從上世紀(jì)50年代目標(biāo)跟蹤的起源到現(xiàn)今,盡管已有大量的研究成果,但是在復(fù)雜條件下實現(xiàn)實時準(zhǔn)確的跟蹤依舊難以實現(xiàn)。成都慧視的跟蹤版是國產(chǎn)化的嗎?新疆目標(biāo)跟蹤批發(fā)商

快速移動的汽車怎么鎖定跟蹤?浙江目標(biāo)跟蹤應(yīng)用

目標(biāo)跟蹤時,多維度、多層級信息融合也十分重要。為了提高對運動目標(biāo)表觀描述的準(zhǔn)確度與可信性,現(xiàn)有的檢測與跟蹤算法通常對時域、空域、頻域等不同特征信息進(jìn)行融合,綜合利用各種冗余、互補(bǔ)信息提升算法的精確性與魯棒性.然而,目前大多算法還只是對單一時間、單一空間的多尺度信息進(jìn)行融合,使用者可以考慮從時間、推理等不同維度,對特征、決策等不同層級的多源互補(bǔ)信息進(jìn)行融合,提升檢測與跟蹤的準(zhǔn)確性。成都慧視開發(fā)的Viztra-HE030圖像處理板采用了RK3588高性能芯片,工業(yè)級的處理能力能夠運用到諸多行業(yè)。浙江目標(biāo)跟蹤應(yīng)用