國外ultima2PPLUS雙光子顯微鏡光刺激

來源: 發(fā)布時間:2022-01-12

雙光子顯微鏡是結合了雙光子激發(fā)技術和激光掃描共聚顯微鏡的一種新型熒光顯微鏡,其原理大致是這樣的:首先,讓我們來看看什么是熒光顯微鏡。熒光顯微鏡是以紫外線為光源,照射被檢物體上的熒光物質或是熒光染料,使其發(fā)出熒光。相比普通光學顯微鏡,熒光顯微鏡運用了波長更短的紫外線,再將可見光過濾掉,提高了分辨力率。而當被檢物體過厚時,從不同深度發(fā)出的熒光都會打在物鏡上,使觀察到的像模糊、發(fā)虛,無法清楚的知道被檢物體的結構。而激光掃描共聚顯微鏡就是在熒光顯微鏡的基礎上,增加了激光掃描裝置,從而解決了上述問題。激光共聚掃描顯微鏡脫離了傳統(tǒng)光學顯微鏡的場光源和局部平面成像模式,采用激光束作光源,激光束經照明孔,經由分光鏡反射至物鏡,并聚焦于樣品上,對標本焦平面上每一點進行掃描。組織樣品中的熒光物質受到刺激后發(fā)出的熒光經原來入射光路直接反向回到分光鏡,通過探測孔時先聚焦,然后被光探頭收集,轉化為信號輸送到計算機進行處理。這個裝置能讓通過探測***的只有焦平面上發(fā)出的熒光,使成像更為清晰準確,同時通過改變物鏡的焦距,能對不同焦平面進行掃描,通過計算機繪出普通顯微鏡無法觀測的三維圖像。雙光子顯微鏡廠家有哪些?國外ultima2PPLUS雙光子顯微鏡光刺激

國外ultima2PPLUS雙光子顯微鏡光刺激,雙光子顯微鏡

新一代微型化雙光子熒光顯微鏡體積小,重只2.2克,適于佩戴在小動物頭部顱窗上,實時記錄數十個神經元、上千個神經突觸的動態(tài)信號。在大型動物上,還可望實現(xiàn)多探頭佩戴、多顱窗不同腦區(qū)的長時程觀測。相比單光子激發(fā),雙光子激發(fā)具有良好的光學斷層、更深的生物組織穿透等優(yōu)勢,其橫向分辨率達到0.65μm,成像質量與商品化大型臺式雙光子熒光顯微鏡可相媲美,遠優(yōu)于目前領域內主導的、美國腦科學計劃重要團隊所研發(fā)的微型化寬場顯微鏡。采用雙軸對稱高速微機電系統(tǒng)轉鏡掃描技術,成像幀頻已達40Hz(256*256像素),同時具備多區(qū)域隨機掃描和每秒1萬線的線掃描能力。此外,采用自主設計可傳導920nm飛秒激光的光子晶體光纖,該系統(tǒng)實現(xiàn)了微型雙光子顯微鏡對腦科學領域較廣泛應用的指示神經元活動的熒光探針(如GCaMP6)的有效利用。 同時采用柔性光纖束進行熒光信號的接收,解決了動物的活動和行為由于熒光傳輸光纜拖拽而受到干擾的難題。未來,與光遺傳學技術的結合,可望在結構與功能成像的同時,精細地操控神經元和神經回路的活動。布魯克雙光子顯微鏡廠家電話雙光子顯微鏡只有焦平面處才能形成雙光子吸收,而焦平面之外由于光強低無法被發(fā)動,所以雙光子成像更清晰。

國外ultima2PPLUS雙光子顯微鏡光刺激,雙光子顯微鏡

研究人員通過用不同激光波長并行化激光掃描(wavelengthmultiplexing),增加了相同時間內可以成像的體積,并同時保持較高的時間和空間分辨率。通過引入兩種波長不同的鈣信號熒光探針,研究人員將神經元群體的活動標記為兩個不同顏色,并同時用兩個不同波長的激光激發(fā)探針,實現(xiàn)了兩個顏色的并行化數據記錄。為了實現(xiàn)三維空間成像,研究人員還分別在兩個激光光路上配置了快速變焦系統(tǒng),分別為電可調節(jié)透鏡(electricaltunablelens)和空間光調制器(spatiallightmodulator)。由此,可以同時以10赫茲的速度記錄500微米500微米的10個平面,覆蓋縱深達600微米,涵蓋了從腦皮層第2層到第5層的結構,體積內記錄到的神經元可以達到2000個以上。

由于具有較高輸出功率的光源可以提高成像速度,在我們的實驗中,時間分辨率主要是受OPO輸出可見光激光功率的限制。盡管在單點掃描系統(tǒng)中,v2PE激發(fā)會使得空間分辨率提高,但多聚焦v2PE顯微鏡具有與1PE多聚焦顯微鏡近乎相同的橫向分辨率,這主要是多聚焦成像和單點掃描技術之間的差異造成的。由于v2PE的激發(fā)體積小于1PE,引入圖像掃描技術可以進一步提高空間分辨率,這種技術需要通過在陣列前引入額外的微透鏡陣列來實現(xiàn)。除此之外,由于可見光區(qū)域的共振效應,可能會產生光漂白,因而為了延長觀察時間,系統(tǒng)還需要對激發(fā)強度和曝光時間做進一步優(yōu)化。雙光子顯微鏡大量運營在實驗室當中;

國外ultima2PPLUS雙光子顯微鏡光刺激,雙光子顯微鏡

在該自適應光學雙光子熒光顯微鏡中,她們將空間光位相調制器光學共軛到顯微物鏡的后焦平面,通過位相調制器將入射光分成若干子區(qū)域,每一塊子區(qū)域的波前都可以被控制。同時,她們用數字微陣列光處理器,以不同的頻率同時調制其中一半子區(qū)域的入射光強度,以另一半子區(qū)域作為“參考波前”。來自所有子區(qū)域光束會在焦點處會聚干涉,通過監(jiān)測焦點激發(fā)的雙光子信號隨時間的變化情況,并進行傅里葉變換分析,可以“分解”得到被調制的每一塊子區(qū)域的“光線”的貢獻信息,從而可以實現(xiàn)對一半子區(qū)域波前的并行測量。對另一半子區(qū)域重復這一測量過程,從而獲得整個入射波前的信息并進行校正。該方法耗時很短,通常約1~3分鐘左右即可完成像差的測量和校正,無需復雜的計算,適用于任何標記密度和標記類型的樣品。更重要的是,得到的像差校正圖案可以用于提高較大視場范圍內的成像質量。該方法無疑為在體研究小鼠大腦皮層深層區(qū)域的生物、醫(yī)學問題提供了可行性方案。雙光子顯微鏡為什么穿透能力強?國外ultima2PPLUS雙光子顯微鏡光刺激

這種雙光子顯微鏡的視場是普通顯微鏡的10倍。國外ultima2PPLUS雙光子顯微鏡光刺激

實驗從理論和實驗上評估了多焦點v2PE顯微鏡的空間分辨率,并與單光子熒光顯微鏡進行了對比,實驗中v2PE的激發(fā)波長為521 nm,使用放大倍率為100倍的物鏡,尺寸為0.6AU,對直徑100nm的熒光顆粒進行了測試性成像,共獲得40幅不同采樣深度的圖像合成為三維圖像。圖像在橫向和縱向的半高全寬分別是177 nm和297 nm,這些值接近顯微鏡的理論分辨率。后續(xù)還利用軟件模擬從理論上研究了多焦點v2PE顯微技術的空間分辨率,模擬計算顯示v2PE點擴散函數(PSF)的橫向半高寬與單光子激發(fā)熒光(1PE)相似,軸向的半高寬較1PE減少,可以提高空間分辨率。國外ultima2PPLUS雙光子顯微鏡光刺激