美國多通道膜片鉗解決方案

來源: 發(fā)布時間:2024-08-30

膜片鉗技術∶從一小片(約幾平方微米)膜獲取電子學方面信息的技術,即保持跨膜電壓恒定——電壓鉗位,從而測量通過膜離子電流大小的技術。通過研究離子通道的離子流,從而了解離子運輸、信號傳遞等信息?;驹恚豪秘摲答侂娮泳€路,將微電極前列所吸附的一個至幾個平方微米的細胞膜的電位固定在一定水平上,對通過通道的微小離子電流作動態(tài)或靜態(tài)觀察,從而研究其功能。研究離子通道的一種電生理技術,是施加負壓將玻璃微電極的前列(開口直徑約1μm)與細胞膜緊密接觸,形成高阻抗封接,可以精確記錄離子通道微小電流。能制備成細胞貼附、內(nèi)面朝外和外面朝內(nèi)三種單通道記錄方式,以及另一種記錄多通道的全細胞方式。膜片鉗技術實現(xiàn)了小片膜的孤立和高阻封接的形成,由于高阻封接使背景噪聲水平**降低,相對地增寬了記錄頻帶范圍,提高了分辨率。另外,它還具有良好的機械穩(wěn)定性和化學絕緣性。而小片膜的孤立使對單個離子通道進行研究成為可能。解鎖細胞秘密,膜片鉗帶您探尋離子通道的奧秘!美國多通道膜片鉗解決方案

美國多通道膜片鉗解決方案,膜片鉗

細胞是動物和人體的基本單元,細胞與細胞內(nèi)的通信是依靠其膜上的離子通道進行的,離子和離子通道是細胞興奮的基礎,亦即產(chǎn)生生物電信號的基礎,生物電信號通常用電學或電子學方法進行測量。由此形成了一門細胞學科--電生理學。膜片鉗技術已成為研究離子通道的黃金標準。電壓門控性離子通道:膜上通道蛋白的帶點集團在膜電位改變時,在電場的作用下,重新分布導致通道的關閉,同時有電荷移動,稱為門控電流。配體門控離子通道:神經(jīng)遞質(如乙酰膽堿)、ji素等與通道蛋白上的特定位點結合,引起蛋白構像的改變,導致通道的打開。德國雙分子層膜片鉗電流鉗制屯流鉗素向細胞內(nèi)注入刺激電流,記錄膜電位對刺激電流的反應。

美國多通道膜片鉗解決方案,膜片鉗

膜片鉗技術發(fā)展歷史:1976年德國馬普生物物理化學研究所Neher和Sakmann在青蛙肌細胞上用雙電極鉗制膜電位的同時,記錄到ACh啟動的單通道離子電流,從而產(chǎn)生了膜片鉗技術。1980年Sigworth等在記錄電極內(nèi)施加5-50cmH2O的負壓吸引,得到10-100GΩ的高阻封接(Giga-seal),明顯降低了記錄時的噪聲實現(xiàn)了單根電極既鉗制膜片電位又記錄單通道電流的突破。1981年Hamill和Neher等對該技術進行了改進,引進了膜片游離技術和全細胞記錄技術,從而使該技術更趨完善,具有1pA的電流靈敏度、1μm的空間分辨率和10μs的時間分辨率。1983年10月,《Single-ChannelRecording》一書問世,奠定了膜片鉗技術的里程碑。Sakmann和Neher也因其杰出的工作和突出貢獻,榮獲1991年諾貝爾醫(yī)學和生理學獎。

離子通道結構研究∶目前,絕大多數(shù)離子通道的一級結構得到了闡明但根本的還是要搞清楚各種離子通道的三維結構,在這方面,美國的二位科學家彼得阿格雷和羅德里克麥金農(nóng)做出了一些開創(chuàng)性的工作,他們到用X光繞射方法得到了K離子通道的三維結構,二位因此獲得2003年諾貝系化學獎。有關離子通道結構不是本PPT的重點,可參考楊寶峰的<離子通道藥理學>和Hill的

美國多通道膜片鉗解決方案,膜片鉗

1937年,Hodgkin和Huxley在烏賊巨大神經(jīng)軸突細胞內(nèi)實現(xiàn)細胞內(nèi)電記錄,獲1963年Nobel獎1946年,凌寧和Gerard創(chuàng)造拉制出前列直徑小于1μm的玻璃微電極,并記錄了骨骼肌的電活動。玻璃微電極的應用使的電生理研究進行了重命性的變化。Voltageclamp(電壓鉗技術)由Cole和Marmont發(fā)明,并很快由Hodgkin和Huxley完善,真正開始了定量研究,建立了H一H模型(膜離子學說),是近代興奮學說的基石。1948年,Katz利用細胞內(nèi)微電極技術記錄到了終板電位;1969年,又證實N—M接觸后的Ach以"量子式"釋放,獲1976年Nobel獎。1976年,德國的Neher和Sakmann發(fā)明PatchClamp(膜片鉗)。并在蛙橫紋肌終板部位記錄到乙酰膽堿引起的通道電流。膜片鉗的膜電容檢測與碳纖電極電化學檢測聯(lián)合運用的技術。德國膜片鉗研究

離子通道研究,從膜片鉗開始,開啟科學探索之旅!美國多通道膜片鉗解決方案

離子通道的近代觀念源于Hodgkin、Huxley、Katz等人在20世紀30—50年代的開創(chuàng)性研究。在1902年,Bernstein創(chuàng)造性地將Nernst的理論應用到生物膜上,提出了“膜學說”。他認為在靜息狀態(tài)下,細胞膜只對鉀離子具有通透性;而當細胞興奮的瞬間,膜的破裂使其喪失了選擇通透性,所有的離子都可以自由通過。Cole等人在1939年進行的高頻交變電流測量實驗表明,當動作電位被觸發(fā)時,雖然細胞的膜電導大為增加,但膜電容卻只略有下降,這個事實表明膜學說所宣稱的膜破裂的觀點是不可靠的。1949年Cole在玻璃微電極技術的基礎上發(fā)明了電壓鉗位(voltageclamptechnique)技術美國多通道膜片鉗解決方案