進口布魯克雙光子顯微鏡商家電話

來源: 發(fā)布時間:2024-08-05

利用鈣成像技術記錄大腦活動,隨著功能光學成像技術的發(fā)展,神經學家們已經可以研究腦區(qū)和神經元內部的工作情況。功能鈣成像技術就是其中之一,其主要原理是將外源性熒光信號和生理現象耦合起來——通過熒光染料信號的改變反映細胞內游離鈣離子濃度,以此細胞的功能狀態(tài)。目前它被廣泛應用于實時監(jiān)測一群相關神經元內鈣離子的變化,從而判斷其功能活動。該技術的出現使得科學家可以親眼目睹神經信號在神經網絡之中時間和空間上的傳遞穿梭。雙光子顯微鏡工作原理是利用兩個光子的能量相加達到熒光激發(fā)能量閾值,來激發(fā)樣品中熒光分子發(fā)出熒光信號。進口布魯克雙光子顯微鏡商家電話

進口布魯克雙光子顯微鏡商家電話,雙光子顯微鏡

隨著技術的發(fā)展,雙光子顯微鏡的性能得到不斷地優(yōu)化,結合它的特點,大致可以分成深和活兩個方面的提升。要想讓激發(fā)激光進入更深的層面,大致可從兩個方面入手,裝置優(yōu)化與標本改造。關于裝置優(yōu)化,我們可以把激光束變得更細,使能量更加集中,就能讓激光穿透更深。關于標本,其中影響光傳播的主要是物質吸收和散射,解決這個問題,我們需要對樣本進行透明化處理。一種方法是運用某種物質將標本浸泡,使其中的物質(主要是脂質)被破壞或溶解。另一種方法是運用電泳將脂質電解,讓標本“透明度”提高。進口ultima雙光子顯微鏡最大分辨率由于其非侵入性和高分辨率的特點,雙光子顯微鏡成為了研究神經科學、ai癥研究、免疫學等領域的重要工具。

進口布魯克雙光子顯微鏡商家電話,雙光子顯微鏡

1.生物組織對紅外光的吸收弱,對可見光吸收強。類似的,平時用手電筒照射手指,會看到手通透紅亮,也是由于生物組織對長波長的紅光吸收少。2.生物組織對紅外光的散射弱。因為瑞利散射的強度反比于波長λ的四次方。類似的,早晨的太陽非常紅,也就是因為長波長的紅光穿透力更強。這兩點共同導致長波長的紅外光比可見光對生物組織的穿透能力強。與單光子顯微鏡(如共聚焦顯微鏡)相比,雙光子顯微鏡可以使用約二倍波長的激光去激發(fā)熒光團。長波長光束散射程度低(RayleighScattering),所以穿透能力強。

WinfriedDenk較初使用的光源是染料飛秒激光器(100fs脈寬、630nm可見光波長)。雖然染料激光器對于實驗室演示尚可,但是使用很不方便所以遠未實現商用。很快雙光子顯微鏡的標配光源就變成了飛秒鈦寶石激光器。除了固態(tài)光源優(yōu)勢,鈦寶石激光器還具有較寬的近紅外波長調諧范圍,而近紅外相比可見光穿透更深,對生物樣品損傷更小。下圖是Thorlabs的雙光子和三光子顯微鏡配置,鈦寶石飛秒可調諧激光器位于平臺較左邊。科學家正在從雙光子轉向三光子顯微鏡。1996年,ChrisXu在康奈爾大學(Denk同導師實驗室)讀博期間發(fā)明了三光子顯微鏡,如果雙光子吸收可行,那么三光子看起來也是自然的發(fā)展方向。三光子成像使用更長的波長,大約在1.3和1.7微米,其成像深度也比雙光子更深,目前記錄約為2.2毫米,人類大腦皮層厚約4毫米。相比雙光子顯微鏡,三光子還要求以較低重頻使用更強和更短的激光脈沖,而傳統(tǒng)的鈦寶石激光器難以達到這些要求,但是對于摻鐿光纖飛秒光參量放大器則非常容易,比如我們的Y-Fi光參量放大器(OPA)。雙光子顯微鏡結合了雙光子激發(fā)技術和激光掃描共聚顯微鏡。

進口布魯克雙光子顯微鏡商家電話,雙光子顯微鏡

目前,腦科學的研究在全球范圍內如火如荼,中國的腦計劃也即將啟動。其中,全景式分析腦連接圖和功能動態(tài)圖的研究成為重點研究方向,如何打破尺度壁壘,將微觀神經元和突觸的信息處理和個體行為信息與全腦融合,是該領域亟待解決的關鍵挑戰(zhàn)。2021年1月6日,由北京大學分子醫(yī)學研究所牽頭,北京大學信息科學與技術學院電子系、工程學院和中國人民醫(yī)學科學院組成的跨學科團隊在NatureMethods上在線發(fā)表了一篇題為《大視場、多平面、長程腦成像的微型雙光子拷貝》的文章。本文報道了第二代小型化雙光子熒光顯微鏡FHIRM-TPM2.0。其成像視場是團隊2017年發(fā)布的第1代小型化顯微鏡的7.8倍。同時具有三維成像能力,獲得了小鼠自由運動行為時大腦三維區(qū)域數千個神經元清晰穩(wěn)定的動態(tài)功能圖像,實現了對同一批次神經元一個月的跟蹤記錄。雙光子顯微鏡供應商找因斯蔻浦(上海)生物科技有限公司。進口布魯克雙光子顯微鏡商家電話

雙光子顯微鏡不需要共聚焦細孔,提高了熒光檢測效率。進口布魯克雙光子顯微鏡商家電話

其實電子顯微鏡相比光學顯微鏡的重要優(yōu)勢或意義不在于放大倍數,而在于超高的分辨率。這兩者是不同的。一般來說,觀察時,除了放大物體外,還需要將其與其他相鄰物體區(qū)分開來。如果兩個相鄰粒子的圖像在光學顯微鏡下,即使放大很大程度,也可能看到兩個相交的亮點(艾里斑),沒有明顯的邊界(更不用說細節(jié)了),說明分辨率不夠。沒有分辨率談放大是沒有意義的。光學顯微鏡的分辨率極限是阿貝極限,大約是光波波長的一半。通常稱之為光學顯微鏡的放大極限,但準確的說應該叫分辨率極限。原因是光的衍射,根本原因是光的波粒二象性。電子衍射實驗證明了電子的波動性,所以在電子顯微鏡中用電子代替光是可能的。電子顯微鏡也有很多種,被攝體像REM。也有根據衍射規(guī)律觀察的電子顯微鏡,如低能電子衍射(LEED)和透射電子顯微鏡(TEM)。兩者主要用于觀察晶體,根據晶體的周期特性在倒易空間產生衍射像,借助埃爾沃德球或傅里葉變換將其變換到實空間,即可得到真實的晶體表面像。進口布魯克雙光子顯微鏡商家電話