氫核磁共振非常規(guī)巖芯孔隙度檢測(cè)

來(lái)源: 發(fā)布時(shí)間:2024-06-05

升高溫度和降低壓力只能在一定程度上促進(jìn)頁(yè)巖氣的解吸附過(guò)程,仍有大量的頁(yè)巖氣存留在頁(yè)巖有機(jī)質(zhì)表面.另外解吸附過(guò)程產(chǎn)生的游離氣無(wú)法主動(dòng)運(yùn)移至井口,實(shí)際生產(chǎn)中常常采用注氣驅(qū)替的方法來(lái)提高頁(yè)巖氣產(chǎn)量,CO2和N2在自然界中大量存在,獲取成本低,安全穩(wěn)定,是兩種常用的驅(qū)替氣體。采用CO2和N2以及兩者混合物分別驅(qū)替CH4,并分析了注入速率對(duì)驅(qū)替效果的影響,結(jié)果表明驅(qū)替氣體注入速率越高,驅(qū)替效果越好.分別對(duì)CO2和N2驅(qū)替CH4的效率進(jìn)行了實(shí)驗(yàn)研究,結(jié)果表明雖然CO2開(kāi)始驅(qū)替所需的初始濃度較高,但是在驅(qū)替過(guò)程中效率高于N2.并且,兩種氣體極終驅(qū)替量都在吸附甲烷氣體的90%以上.利用分子動(dòng)力學(xué)模擬也得到了相似結(jié)果,并揭示了CO2和 N2不同的驅(qū)替機(jī)制: CO2與壁面吸附力高于CH4,驅(qū)替過(guò)程中CO2會(huì)直接取代 CH4的吸附位置; N2雖然與壁面吸附力低于CH4,但是注入N2會(huì)導(dǎo)致局部壓力降低,從而促進(jìn)CH4解吸附.通過(guò)分子動(dòng)力學(xué)模擬研究了碳納米管中CO2驅(qū)替CH4的過(guò)程,發(fā)現(xiàn)驅(qū)替在CO2分子垂直于壁面時(shí)極容易進(jìn)行,并認(rèn)為碳納米管存在一個(gè)合適管徑使驅(qū)替效率極高.T1用CPMG序列測(cè)定孔隙流體的橫向弛豫時(shí)間。氫核磁共振非常規(guī)巖芯孔隙度檢測(cè)

氫核磁共振非常規(guī)巖芯孔隙度檢測(cè),非常規(guī)巖芯

石油勘探開(kāi)發(fā)從常規(guī)巖芯油氣延伸到非常規(guī)巖芯油氣領(lǐng)域,非常規(guī)巖芯油氣地質(zhì)研究日益受到重視。20 世紀(jì) 90 年代以來(lái),中國(guó)出現(xiàn)深盆氣、根源氣 、深盆油 、向斜油 、非穩(wěn)態(tài)成藏、致密油、致密氣 、頁(yè)巖氣、頁(yè)巖油、源巖油氣等概念。油氣地質(zhì)基礎(chǔ)研究呈現(xiàn)出由常規(guī)巖芯油氣向非常規(guī)巖芯油氣發(fā)展的新趨向,非常規(guī)巖芯油氣地質(zhì)學(xué)是非常規(guī)巖芯油氣資源勘探開(kāi)發(fā)實(shí)踐的產(chǎn)物,是石油與天然氣地質(zhì)學(xué)的一個(gè)重要分支學(xué)科,也是推動(dòng)非常規(guī)巖芯油氣工業(yè)實(shí)現(xiàn)跨越式發(fā)展的理論基礎(chǔ)。 非常規(guī)巖芯儲(chǔ)層呈現(xiàn)低速非達(dá)西滲流特征,存在啟動(dòng)壓力梯度;滲流曲線由平緩過(guò)渡的兩段組成,較低滲流速度下的上凹型非線性滲流曲線和較高流速下的擬線性滲流曲線,滲流曲線主要受巖芯滲透率的影響,滲透率越低,啟動(dòng)壓力梯度越大,非達(dá)西現(xiàn)象越明顯。需要人工壓裂注氣液,增加驅(qū)替力,形成有效開(kāi)采的流動(dòng)機(jī)制。高精度非常規(guī)巖芯液體驅(qū)替的影響非常規(guī)巖芯儲(chǔ)層有致密油、致密氣、頁(yè)巖油、頁(yè)巖氣、煤層氣、重油瀝青、天然氣水合物等。

氫核磁共振非常規(guī)巖芯孔隙度檢測(cè),非常規(guī)巖芯

頁(yè)巖油是指已生成仍滯留于富有機(jī)質(zhì)泥頁(yè)巖地層微納米級(jí)儲(chǔ)集空間中的石油,富有機(jī)質(zhì)泥頁(yè)巖既是生油巖,又是儲(chǔ)集巖,具有6大地質(zhì)特征: 地層壓力高且油質(zhì)輕,易于流動(dòng)和開(kāi)采。頁(yè)巖油富集區(qū)位于已大規(guī)模生油的成熟富有機(jī)質(zhì)頁(yè)巖地層中,一般地層能量較高,壓力系數(shù)可達(dá) 1. 2~2.0,也有少數(shù)低壓,如鄂爾多斯盆地延長(zhǎng)組壓力系數(shù)為0.7~0.9。一般油質(zhì)較輕,原油密度多為0.70~0.85 g /cm3,黏度多為0.7~20mPa·s,氣油比高,在納米級(jí)孔喉儲(chǔ)集系統(tǒng)中,更易于流動(dòng)和開(kāi)采。大面積連續(xù)分布,資源潛力大。頁(yè)巖油分布不受構(gòu)造控制,無(wú)明顯圈閉界限,含油范圍受生油窗富有機(jī)質(zhì)頁(yè)巖分布控制,大面積連續(xù)分布于盆地坳陷或斜坡區(qū)。頁(yè)巖生成的石油較多滯留于頁(yè)巖中,一般占總生油量的 20%~50% ,資源潛力大。北美海相頁(yè)巖分布面積大、厚度穩(wěn)定、有機(jī)質(zhì)豐度高、成熟度較高,有利于形成輕質(zhì)和凝析頁(yè)巖油。

非常規(guī)巖芯油氣儲(chǔ)層與常規(guī)巖芯油氣儲(chǔ)層的差異決定了儲(chǔ)層中油氣賦存狀態(tài)、運(yùn)移方式、流動(dòng)機(jī)理以及含油氣性等多個(gè)方面,但歸根到底,儲(chǔ)層致密、孔喉小、微觀結(jié)構(gòu)復(fù)雜是非常規(guī)巖芯油氣儲(chǔ)層與常規(guī)巖芯油氣儲(chǔ)層的本質(zhì)差異 。 非常規(guī)巖芯儲(chǔ)層呈現(xiàn)低速非達(dá)西滲流特征,存在啟動(dòng)壓力梯度;滲流曲線由平緩過(guò)渡的兩段組成,較低滲流速度下的上凹型非線性滲流曲線和較高流速下的擬線性滲流曲線,滲流曲線主要受巖芯滲透率的影響,滲透率越低,啟動(dòng)壓力梯度越大,非達(dá)西現(xiàn)象越明顯。需要人工壓裂注氣液,增加驅(qū)替力,形成有效開(kāi)采的流動(dòng)機(jī)制。非常規(guī)巖芯的特性使其成為地質(zhì)勘探中備受關(guān)注的對(duì)象。

氫核磁共振非常規(guī)巖芯孔隙度檢測(cè),非常規(guī)巖芯

頁(yè)巖氣開(kāi)采是指貯存在微納米孔隙和顆粒間的頁(yè)巖氣在人為驅(qū)動(dòng)下運(yùn)移至宏觀裂縫,極終匯集到井筒的過(guò)程 頁(yè)巖氣具有多種貯存方式: ①吸附在有機(jī)質(zhì)(干酪根) 孔隙表面; ②游離于孔隙和裂縫中; ③溶解于瀝青和干酪根中.其中吸附是主要貯存方式,吸附氣可以占到頁(yè)巖氣總量 20% ~ 85%.吸附量的大小與有機(jī)碳含量成正比,此外還受儲(chǔ)層的壓力、溫度和比表面積等因素的影響,關(guān)系十分復(fù)雜.吸附機(jī)理的準(zhǔn)確認(rèn)識(shí)對(duì)頁(yè)巖氣解吸以及產(chǎn)量預(yù)測(cè)起到至關(guān)重要的作用.由于流體之間的弛豫時(shí)間NMR數(shù)據(jù)可用于區(qū)分粘土結(jié)合水、毛細(xì)結(jié)合水、可動(dòng)水、天然氣、輕質(zhì)油和粘性油。高精度非常規(guī)巖芯液體驅(qū)替的影響

達(dá)西進(jìn)行了水通過(guò)飽和砂的實(shí)驗(yàn)研究,發(fā)現(xiàn)了滲流量Q與滲流長(zhǎng)度L成反比。氫核磁共振非常規(guī)巖芯孔隙度檢測(cè)

聚合物驅(qū)油: 聚合物溶液與盲端中的油不僅會(huì)產(chǎn)生切應(yīng)力,還會(huì)在聚合物長(zhǎng)鏈分子的作用下產(chǎn)生法向應(yīng)力.由于法向應(yīng)力的作用,聚合物溶液對(duì)油滴產(chǎn)生了更大的拉力,從而更有利于將油滴從側(cè)面盲端中“拉”出來(lái).聚合物溶液的粘彈性越大,對(duì)油滴的拉拽效果越好,越有利于提高驅(qū)替效率。 經(jīng)實(shí)驗(yàn)發(fā)現(xiàn),使用水、甘油、粘彈性HPAM 溶液分別作為驅(qū)替劑進(jìn)行驅(qū)油試驗(yàn)時(shí),HPAM 驅(qū)替后孔道盲端中的殘余油量極少.聚合物溶液在孔道中流動(dòng)時(shí),不僅能夠像非彈性流體一樣“推”著前面的油,還能“拉”著側(cè)面和后面的 油.這是由于聚合物分子為長(zhǎng)鏈高分子,長(zhǎng)鏈與長(zhǎng)鏈之間相互纏繞、相互制約.運(yùn)動(dòng)時(shí),聚合物長(zhǎng)鏈分子就會(huì)產(chǎn)生拉伸,帶動(dòng)周圍的分子一起運(yùn)動(dòng),從而能夠拉拽盲端中的殘余油,實(shí)驗(yàn)結(jié)果表明,人工合成聚合物( HPAM,PAM) 的驅(qū)油效果比生物聚合物(黃原膠) 好,其中,HPAM 的效果極好,而且增加聚合物的分子量有利于提高采收率.氫核磁共振非常規(guī)巖芯孔隙度檢測(cè)