微米級膜厚儀供應鏈

來源: 發(fā)布時間:2024-08-21

薄膜是指分子 、原子或者是離子在基底表面沉積形成的一種特殊的二維材料。近幾十年來,隨著材料科學和鍍膜工藝的不斷發(fā)展,厚度在納米量級(幾納米到幾百納米范圍內)薄膜的研究和應用迅速增加。與體材料相比,因為納米薄膜的尺寸很小,使得表面積與體積的比值增加,表面效應所表現出的性質非常突出,因而在光學性質和電學性質上有許多獨特的表現。納米薄膜應用于傳統(tǒng)光學領域,在生產實踐中也得到了越來越廣泛的應用,尤其是在光通訊、光學測量,傳感,微電子器件,生物與醫(yī)學工程等領域的應用空間更為廣闊。通過測量反射光的干涉來計算膜層厚度,利用膜層與底材的反射率和相位差來實現測量。微米級膜厚儀供應鏈

干涉法作為面掃描方式可以一次性對薄膜局域內的厚度進行解算 ,適用于對面型整體形貌特征要求較高的測量對象。干涉法算法在于相位信息的提取,借助多種復合算法通??梢赃_到納米級的測量準確度。然而主動干涉法對條紋穩(wěn)定性不佳,光學元件表面的不清潔、光照度不均勻、光源不穩(wěn)定、外界氣流震動干擾等因素均可能影響干涉圖的完整性[39],使干涉圖樣中包含噪聲和部分區(qū)域的陰影,給后期處理帶來困難。除此之外,干涉法系統(tǒng)精度的來源——精密移動及定位部件也增加了系統(tǒng)的成本,高精度的干涉儀往往較為昂貴。白光干涉膜厚儀經銷批發(fā)白光干涉膜厚測量技術可以實現對薄膜的非接觸式測量。

目前 ,應用的顯微干涉方式主要有Mirau顯微干涉和Michelson顯微干涉兩張方式。在Mirau型顯微干涉結構,在該結構中物鏡和被測樣品之間有兩塊平板,一個是涂覆有高反射膜的平板作為參考鏡,另一塊涂覆半透半反射膜的平板作為分光棱鏡,由于參考鏡位于物鏡和被測樣品之間,從而使物鏡外殼更加緊湊,工作距離相對而言短一些,其倍率一般為10-50倍,Mirau顯微干涉物鏡參考端使用與測量端相同顯微物鏡,因此沒有額外的光程差。是常用的方法之一。

為限度提高靶丸內爆壓縮效率 ,期望靶丸所有幾何參數、物性參數均為理想球對稱狀態(tài)。因此,需要對靶丸殼層厚度分布進行精密的檢測。靶丸殼層厚度常用的測量手法有X射線顯微輻照法、激光差動共焦法、白光干涉法等。下面分別介紹了各個方法的特點與不足,以及各種測量方法的應用領域。白光干涉法[30]是以白光作為光源,寬光譜的白光準直后經分光棱鏡分成兩束光,一束光入射到參考鏡。一束光入射到待測樣品。由計算機控制壓電陶瓷(PZT)沿Z軸方向進行掃描,當兩路之間的光程差為零時,在分光棱鏡匯聚后再次被分成兩束,一束光通過光纖傳輸,并由光譜儀收集,另一束則被傳遞到CCD相機,用于樣品觀測。利用光譜分析算法對干涉信號圖進行分析得到薄膜的厚度。該方法能應用靶丸殼層壁厚的測量,但是該測量方法需要已知靶丸殼層材料的折射率,同時,該方法也難以實現靶丸殼層厚度分布的測量。白光干涉膜厚測量技術可以實現對薄膜的大范圍測量和分析。

薄膜作為一種特殊的微結構 ,近年來在電子學 、摩擦學、現代光學得到了廣泛的應用,薄膜的測試技術變得越來越重要。尤其是在厚度這一特定方向上,尺寸很小,基本上都是微觀可測量。因此,在微納測量領域中,薄膜厚度的測試是一個非常重要而且很實用的研究方向。在工業(yè)生產中,薄膜的厚度直接關系到薄膜能否正常工作。在半導體工業(yè)中,膜厚的測量是硅單晶體表面熱氧化厚度以及平整度質量控制的重要手段。薄膜的厚度影響薄膜的電磁性能、力學性能和光學性能等,所以準確地測量薄膜的厚度成為一種關鍵技術。白光干涉膜厚儀是一種可用于測量薄膜厚度的儀器,適用于透明薄膜和平行表面薄膜的測量。測量膜厚儀大概價格多少

白光干涉膜厚儀是用于測量薄膜厚度的一種儀器,可用于透明薄膜和平行表面薄膜的測量。微米級膜厚儀供應鏈

根據以上分析可知 ,白光干涉時域解調方案的優(yōu)點是:①能夠實現測量;②抗干擾能力強,系統(tǒng)的分辨率與光源輸出功率的波動,光源的波長漂移以及外界環(huán)境對光纖的擾動等因素無關;③測量精度與零級干涉條紋的確定精度以及反射鏡的精度有關;④結構簡單,成本較低。但是,時域解調方法需要借助掃描部件移動干涉儀一端的反射鏡來進行相位補償,所以掃描裝置的分辨率將影響系統(tǒng)的精度。采用這種解調方案的測量分辨率一般是幾個微米,達到亞微米的分辨率,主要受機械掃描部件的分辨率和穩(wěn)定性限制。文獻[46]所報道的位移掃描的分辨率可以達到0.54μm。當所測光程差較小時,F-P腔前后表面干涉峰值相距很近,難以區(qū)分,此時時域解調方案的應用受到限制。微米級膜厚儀供應鏈