所述電子測量儀22包括一電子千分表221以及一千分表夾持裝置222,所述電子千分表221使得所述激光位移傳感器4的檢驗精度極大提高;所述電子千分表221夾持在所述千分表夾持裝置222上,所述千分表夾持裝置222一端抵接于所述延伸部231,另一端抵接于所述橫向蝸桿211上,當所述橫向蝸桿211進行橫向位移時,所述電子千分表221可以精確的測量位移量。所述傳感器夾持裝置3包括一縱向螺桿31以及一夾持器32;所述夾持器32套設在所述縱向螺桿31上,所述夾持器32可在所述縱向螺桿31上調節(jié)高度,所述激光位移傳感器4夾持在所述夾持器32上。此外,它們通常具有用戶友好的界面和操作方式,使得使用者能夠輕松地進行測量和數據分析。蕪湖激光位移傳感器常見問題
針對目前國內自主研制的激光位移傳感器精度低,測量范圍小等問題,提出了一種采用光學設計軟件預先仿真整個激光位移傳感器光學系統(tǒng)的方法。在分析系統(tǒng)各部分的光學特性的基礎上,結合具體要求設計了一個激光位移傳感器的光學系統(tǒng),其工作范圍為(50±10)mm。采用系統(tǒng)分割的方法,將整個光學系統(tǒng)分為兩部分進行設計,No.1部分是激光束的整形透鏡,要求在有效的工作范圍內得到小而均勻的出射光斑,設計結果表明,在測量范圍內,光斑大小能夠控 制在10-1mm量級;另一部分是被測面散射光接收的成像物鏡,該系統(tǒng)的特點是物面和像面相對于光軸都有一定的角度,實驗結果表明其成像滿足Scheimpflug條件。 廣州激光位移傳感器性價比高激光位移傳感器在汽車行業(yè)的應用案例。
激光位移傳感器根據入射光角度的不同可分為直入射式和斜入射式兩種[1],本設計采用的是直入射式,其光路結構如圖1所示。整套光路可以分為兩部分,即整形系統(tǒng)和接收系統(tǒng)[2]。左邊部分是光束整形系統(tǒng),其作用是將激光器發(fā)出的光束匯聚在工作范圍內,使匯聚的光斑盡量小而均勻。光源為半導體激光器(LD),它經整形系統(tǒng)在測量范圍50±10mm內形成均勻的光斑。后面則是光束接收系統(tǒng),它將物體表面的漫反射光匯聚到光敏探測器上,使其精確成像。圖中α為被測面與成像透鏡光軸夾角,β為光敏探測器與光軸的夾角,do和di分別表示物距和像距。
圖3a至圖3c示出了在弧矢(S)方向和(T)方向的MTF值被配置為滿足上述要求的情況下,被感光元件接收到的光斑的形狀。圖3a是被測物體在激光位移傳感器的best小量程處的情況下,感光元件接收到的光斑的形狀,OBJ:-2.1000mm,0.0000mm為物點在子午方向無偏離,在弧矢方向偏離-2.1mm,IMA:1.627,0.000mm為所成的像點在子午方向無偏離,在弧矢方向偏離1.627mm。圖3b是被測物體在激光位移傳感器的中間量程處的情況下,感光元件接收到的光斑的形狀,OBJ:0.0000,0.0000mm為物點在弧矢方向無偏離,在子午方向無偏離,IMA:-0.243,0.000mm為所成的像點在子午方向無偏離,在弧矢方向偏離-0.243mm。圖3c是被測物體在激光位移傳感器的比較大量程處的情況下,感光元件接收到的光斑的形狀,OBJ:2.1000,0.0000mm為物點在子午方向無偏離,高精度激光位移傳感器具有較高的精確度,能夠滿足精密測量的需求。
通過所述控制面板14設置所述電動伸縮雙直線導軌11伸縮至特定的距離,打開所述激光位移傳感器4,使得所述激光位移傳感器4的激光照射在所述激光紅外線接收擋板5的接收面上,記錄所述激光位移傳感器4至所述激光紅外線接收擋板5的距離;旋轉所述位移調節(jié)把手212使得所述橫向蝸桿211橫向位移,記錄所述電子千分表221的位移數據,記錄此時所述激光位移傳感器4至所述激光紅外線接收擋板5的距離,通過比較所述激光位移傳感器4前后兩次測量的距離差與所述電子千分表221的位移數據,計算所述激光位移傳感器4的誤差;調節(jié)所述電動伸縮雙直線導軌11的伸縮距離,重復以上測量,以減少測量誤差。高精度激光位移傳感器采用激光技術,能夠實現(xiàn)非常精確的位移測量。黃浦區(qū)激光位移傳感器制作廠家
激光位移傳感器可以實現(xiàn)微米級的位移測量。蕪湖激光位移傳感器常見問題
要想在工作范圍內得到好的光斑質量,可采用柱面鏡或非球面實現(xiàn),另外波前編碼和切趾法在延拓焦深方面也有很好的效果[3,4],但這樣的光學系統(tǒng)相對較復雜,元件較多,不宜裝調,成本也會增長。因此,在精度允許的情況下,可考慮全部采用球面鏡,不考慮焦深延拓,用變倍的方法實現(xiàn)在40、45、50、55、60mm物距處光斑大小盡量均勻一致。根據光譜分布,設定中心波長權重為3,邊緣波長權重為1。要消掉少量的色差,系統(tǒng)至少需要兩片鏡片。根據以上要求選定了一個初始結構,經過優(yōu)化得到以下best設計結果。圖2為優(yōu)化后的鏡頭結構(像距在50mm處)。表1為effective工作范圍內軸上視場的光斑大小分布。蕪湖激光位移傳感器常見問題