高性能光譜共焦供應鏈

來源: 發(fā)布時間:2024-06-11

為了滿足全天候觀察的需求,設計了波段范圍為可見光-短波紅外寬光譜共焦光學成像系統(tǒng)。根據(jù)寬光譜共焦原理以及光學被動式無熱化原理,設計了一個波段范圍為0.4μm~2.5μm、焦距數(shù)為50 mm,F(xiàn)數(shù)為2.8的光學成像系統(tǒng),該系統(tǒng)在可見光波段在奈奎斯特頻率為30 lp/mm時傳函值高于0.7,紅外波段在奈奎斯特頻率為30 lp/mm時傳函值高于0.5,探測器選用為15μm×15μm、像元數(shù)為640 pixel×512 pixel碲鎘汞探測器。該寬光譜共焦型光學系統(tǒng)均采用普通玻璃材料以及易加工的球面透鏡,在溫度范圍-40℃~+60℃內(nèi)對光學系統(tǒng)消熱差,實現(xiàn)了無需調(diào)焦即可滿足晝夜觀察的使用需求,可廣泛應用于安防監(jiān)控、森林防火等領域 。光譜共焦位移傳感器在微機電系統(tǒng)、醫(yī)學、材料科學等領域中有著廣泛的應用。高性能光譜共焦供應鏈

光譜共焦傳感器是一種高精度位移傳感器,綜合了光學成像和光譜分析技術,廣泛應用于3C(計算機、通信和消費電子)電子行業(yè)。在智能手機中,光譜共焦傳感器可用于線性馬達的位移測量,通過實時監(jiān)控和控制線性馬達的位移,可大幅提高智能手機的定位功能和相機的成像精度。同時,還可以測量手機屏幕的曲面角度和厚度等參數(shù) 。在生產(chǎn)平板電腦過程中,光譜共焦傳感器還可用于各種移動結構部件的位移和振動檢測。通過對平板電腦內(nèi)的各種移動機構、控制元件進行精密位移、振動、形變和應力等參數(shù)的測量,實現(xiàn)對其制造精度和運行狀態(tài)的實時監(jiān)控。新型光譜共焦生產(chǎn)商光譜共焦位移傳感器具有非接觸式測量的優(yōu)勢,可以在微觀尺度下進行精確的位移測量;

靶丸內(nèi)表面輪廓是激光核聚變靶丸的關鍵參數(shù),需要精密檢測。本文首先分析了基于白光共焦光譜和精密氣浮軸系的靶丸內(nèi)表面輪廓測量基本原理,建立了靶丸內(nèi)表面輪廓的白光共焦光譜測量方法。此外,搭建了靶丸內(nèi)表面輪廓測量實驗裝置,建立了基于靶丸光學圖像的輔助調(diào)心方法,實現(xiàn)了靶丸內(nèi)表面輪廓的精密測量,獲得了準確的靶丸內(nèi)表面輪廓曲線;對測量結果的可靠性進行了實驗驗證和不確定度分析,結果表明 ,白光共焦光譜能實現(xiàn)靶丸內(nèi)表面低階輪廓的精密測量.

光譜共焦測量技術由于其高精度、允許被測表面有更大的傾斜角、測量速度快、實時性高、對被測表面狀況要求低、以及高分辨率的獨特優(yōu)勢,迅速成為工業(yè)測量的熱門傳感器,在生物醫(yī)學、材料科學、半導體制造、表面工程研究、精密測量、3C電子等領域得到大量應用。本次測量場景使用的是創(chuàng)視智能TS-C1200光譜共焦傳感頭和CCS控制器。TS-C系列光譜共焦位移傳感器能夠實現(xiàn)0.025μm的重復精度,±0.02% of F.S.的線性精度, 30kHz的采樣速度 ,以及±60°的測量角度,能夠適應鏡面、透明、半透明、膜層、金屬粗糙面、多層玻璃等材料表面,支持485、USB、以太網(wǎng)、模擬量的數(shù)據(jù)傳輸接口。光譜共焦技術可以實現(xiàn)對樣品內(nèi)部結構的觀察和分析。

在塑料薄膜和透明材料薄厚測量方面,研究人員探討了光譜共焦傳感器在全透明平板電腦平整度測量中由于不同折射率引入的測量誤差并進行了補償,在機器視覺技術方面利用光譜共焦傳感器檢測透明材料的薄厚及弧形玻璃曲面的薄厚。在外表粗糙度測量方面,研究人員闡述了不同方式測量外表粗糙度的優(yōu)缺點,并選擇了基于光譜共焦傳感器的測量方式進行試驗,為外表粗糙度的高精密測量提供了一種新方法 。研究人員利用小二乘法計算校準誤差并進行了離散系統(tǒng)誤差測算,以減少光譜共焦傳感器校準后的誤差,并在不同精度標準器下探尋了光譜共焦傳感器的校準誤差變化情況,這對于今后光譜共焦傳感器的應用和科學研究具有重要意義。光譜共焦位移傳感器可以用于材料的彈性模量、形變和破壞等參數(shù)的測量。推薦光譜共焦精度

線性色散設計的光譜共焦測量技術是一種新型的測量方法。高性能光譜共焦供應鏈

光譜共焦傳感器是專為需要高精度測量任務而設計的,通常應用于研發(fā)任務、實驗室和醫(yī)療、半導體制造、玻璃生產(chǎn)和塑料加工。除了對高反射、有光澤的金屬部件進行距離測量以外,這些傳感器還可用于測量深色、漫反射材料、以及透明薄膜、板或層的單面厚度測量。傳感器還受益于較大的間隔距離(高達100毫米),從而為用戶在使用傳感器的各種應用方面提供更大的靈活性。另外,傳感器的傾斜角度已顯著增加,這在測量表面特征的變化時帶來更好的性能,高性能光譜共焦供應鏈