在激光慣性約束聚變(ICF)物理實驗中,靶丸殼層折射率、厚度以及其分布參數(shù)是非常關(guān)鍵的參數(shù)。因此,實現(xiàn)對靶丸殼層折射率、厚度及其分布的精密測量對精密ICF物理實驗研究非常重要。由于靶丸尺寸微小、結(jié)構(gòu)特殊、測量精度要求高,因此如何實現(xiàn)對靶丸殼層折射率及其厚度分布的精密測量是靶參數(shù)測量技術(shù)研究中的重要內(nèi)容。本文針對這一需求,開展了基于白光干涉技術(shù)的靶丸殼層折射率及厚度分布測量技術(shù)研究。精確測量靶丸殼層折射率、厚度及其分布是激光慣性約束聚變中至關(guān)重要的,對于ICF物理實驗的研究至關(guān)重要。由于靶丸特殊的結(jié)構(gòu)和微小的尺寸,以及測量的高精度要求,如何實現(xiàn)靶丸殼層折射率及其厚度分布的精密測量是靶參數(shù)測量技術(shù)研究中的重要目標(biāo)。本文就此需求開展了基于白光干涉技術(shù)的靶丸殼層折射率及厚度分布測量技術(shù)的研究。隨著技術(shù)的進(jìn)步和應(yīng)用領(lǐng)域的拓展,白光干涉膜厚儀的性能和功能將不斷提高和擴(kuò)展。測量膜厚儀產(chǎn)品使用誤區(qū)
對同一靶丸相同位置進(jìn)行白光垂直掃描干涉 ,圖4-3是靶丸的垂直掃描干涉示意圖,通過控制光學(xué)輪廓儀的運動機(jī)構(gòu)帶動干涉物鏡在垂直方向上的移動,從而測量到光線穿過靶丸后反射到參考鏡與到達(dá)基底直接反射回參考鏡的光線之間的光程差,顯然,當(dāng)一束平行光穿過靶丸后,偏離靶丸中心越遠(yuǎn)的光線,測量到的有效壁厚越大,其光程差也越大,但這并不表示靶丸殼層的厚度,當(dāng)垂直穿過靶丸中心的光線測得的光程差才對應(yīng)靶丸的上、下殼層的厚度。測量膜厚儀產(chǎn)品使用誤區(qū)操作需要一定的專業(yè)技能和經(jīng)驗,需要進(jìn)行充分的培訓(xùn)和實踐。
常用白光垂直掃描干涉系統(tǒng)的原理:入射的白光光束通過半反半透鏡進(jìn)入到顯微干涉物鏡后,被分光鏡分成兩部分,一個部分入射到固定的參考鏡,一部分入射到樣品表面,當(dāng)參考鏡表面和樣品表面的反射光通過分光鏡后,再次匯聚產(chǎn)生干涉條紋,干涉光通過透鏡后,利用電荷耦合器(CCD)可探測整個視場內(nèi)雙白光光束的干涉圖像。利用Z向精密位移臺帶動干涉鏡頭或樣品臺Z向掃描,可獲得一系列的干涉圖像。根據(jù)干涉圖像序列中對應(yīng)點的光強(qiáng)隨光程差變化曲線,可得該點的Z向相對位移;然后,由CCD圖像中每個像素點光強(qiáng)最大值對應(yīng)的Z向位置獲得被測樣品表面的三維形貌。
在白光反射光譜探測模塊中,入射光經(jīng)過分光鏡1分光后 ,一部分光通過物鏡聚焦到靶丸表面 ,靶丸殼層上、下表面的反射光經(jīng)過物鏡、分光鏡1、聚焦透鏡、分光鏡2后,一部分光聚焦到光纖端面并到達(dá)光譜儀探測器,可實現(xiàn)靶丸殼層白光干涉光譜的測量,一部分光到達(dá)CCD探測器,可獲得靶丸表面的光學(xué)圖像。靶丸吸附轉(zhuǎn)位模塊和三維運動模塊分別用于靶丸的吸附定位以及靶丸特定角度轉(zhuǎn)位以及靶丸位置的輔助調(diào)整,測量過程中,將靶丸放置于軸系吸嘴前端,通過微型真空泵負(fù)壓吸附于吸嘴上;然后,移動位移平臺,將靶丸移動至CCD視場中心,通過Z向位移臺,使靶丸表面成像清晰;利用光譜儀探測靶丸殼層的白光反射光譜;靶丸在軸系的帶動下,平穩(wěn)轉(zhuǎn)位到特定角度,由于軸系的回轉(zhuǎn)誤差,轉(zhuǎn)位后靶丸可能偏移CCD視場中心,此時可通過調(diào)整軸系前端的調(diào)心結(jié)構(gòu),使靶丸定點位于視場中心并采集其白光反射光譜;重復(fù)以上步驟,可實現(xiàn)靶丸特定位置或圓周輪廓白光反射光譜數(shù)據(jù)的測量。為減少外界干擾和震動而引起的測量誤差,該裝置放置于氣浮平臺上,通過高性能的隔振效果可保證測量結(jié)果的穩(wěn)定性。隨著技術(shù)的進(jìn)步和應(yīng)用領(lǐng)域的拓展,白光干涉膜厚儀的性能和功能將不斷提高和擴(kuò)展 。
薄膜是一種特殊的二維材料,由分子、原子或離子沉積在基底表面形成。近年來,隨著材料科學(xué)和鍍膜技術(shù)的不斷發(fā)展,厚度在納米量級(幾納米到幾百納米范圍內(nèi))的薄膜研究和應(yīng)用迅速增加。與體材料相比,納米薄膜的尺寸很小,表面積與體積的比值增大,因而表面效應(yīng)所表現(xiàn)出來的性質(zhì)非常突出,對于光學(xué)性質(zhì)和電學(xué)性質(zhì)等具有許多獨特的表現(xiàn)。納米薄膜在傳統(tǒng)光學(xué)領(lǐng)域中的應(yīng)用越來越廣,尤其是在光通訊、光學(xué)測量、傳感、微電子器件、醫(yī)學(xué)工程等領(lǐng)域有更為廣闊的應(yīng)用前景。總結(jié),白光干涉膜厚儀是一種應(yīng)用廣、具有高精度和可靠性的薄膜厚度測量儀器。國內(nèi)膜厚儀按需定制
白光干涉膜厚儀的應(yīng)用非常廣,特別是在半導(dǎo)體、光學(xué)、電子和化學(xué)等領(lǐng)域。測量膜厚儀產(chǎn)品使用誤區(qū)
利用包絡(luò)線法計算薄膜的光學(xué)常數(shù)和厚度,但還存在很多不足,包絡(luò)線法需要產(chǎn)生干涉波動,要求在測量波段內(nèi)存在多個干涉極值點,且干涉極值點足夠多,精度才高。理想的包絡(luò)線是根據(jù)聯(lián)合透射曲線的切點建立的,在沒有正確方法建立包絡(luò)線時,通常使用拋物線插值法建立,這樣造成的誤差較大。包絡(luò)法對測量對象要求高,如果薄膜較薄或厚度不足情況下,會造成干涉條紋減少,干涉波峰個數(shù)較少,要利用干涉極值點建立包絡(luò)線就越困難,且利用拋物線插值法擬合也很困難,從而降低該方法的準(zhǔn)確度。其次,薄膜吸收的強(qiáng)弱也會影響該方法的準(zhǔn)確度,對于吸收較強(qiáng)的薄膜,隨干涉條紋減少,極大值與極小值包絡(luò)線逐漸匯聚成一條曲線,該方法就不再適用。因此,包絡(luò)法適用于膜層較厚且弱吸收的樣品。測量膜厚儀產(chǎn)品使用誤區(qū)