針對(duì)微米級(jí)工業(yè)薄膜厚度測(cè)量,開發(fā)了一種基于寬光譜干涉的反射式法測(cè)量方法,并研制了適用于工業(yè)應(yīng)用的小型薄膜厚度測(cè)量系統(tǒng),考慮了成本、穩(wěn)定性、體積等因素要求。該系統(tǒng)結(jié)合了薄膜干涉和光譜共聚焦原理,采用波長(zhǎng)分辨下的薄膜反射干涉光譜模型,利用經(jīng)典模態(tài)分解和非均勻傅里葉變換的思想,提出了一種基于相位功率譜分析的膜厚解算算法。該算法能夠有效利用全光譜數(shù)據(jù)準(zhǔn)確提取相位變化,抗干擾能力強(qiáng),能夠排除環(huán)境噪聲等假頻干擾。經(jīng)過對(duì)PVC標(biāo)準(zhǔn)厚度片、PCB板芯片膜層及鍺基SiO2膜層的測(cè)量實(shí)驗(yàn)驗(yàn)證,結(jié)果表明該測(cè)厚系統(tǒng)具有1~75微米厚度的測(cè)量量程和微米級(jí)的測(cè)量不確定度,而且無需對(duì)焦,可以在10ms內(nèi)完成單次測(cè)量,滿足工業(yè)級(jí)測(cè)量需要的高效便捷的應(yīng)用要求。白光干涉膜厚儀廣泛應(yīng)用于半導(dǎo)體、光學(xué)、電子、化學(xué)等領(lǐng)域,為研究和開發(fā)提供了有力的手段。測(cè)量膜厚儀生產(chǎn)廠家哪家好
根據(jù)以上分析,白光干涉時(shí)域解調(diào)方案的優(yōu)點(diǎn)如下:①能夠?qū)崿F(xiàn)測(cè)量;②抗干擾能力強(qiáng),系統(tǒng)的分辨率與光源輸出功率的波動(dòng)、光源波長(zhǎng)的漂移以及外界環(huán)境對(duì)光纖的擾動(dòng)等因素?zé)o關(guān);③測(cè)量精度與零級(jí)干涉條紋的確定精度以及反射鏡的精度有關(guān);④結(jié)構(gòu)簡(jiǎn)單,成本較低。但是,時(shí)域解調(diào)方法需要借助掃描部件移動(dòng)干涉儀一端的反射鏡來進(jìn)行相位補(bǔ)償,因此掃描裝置的分辨率會(huì)影響系統(tǒng)的精度。采用這種解調(diào)方案的測(cè)量分辨率一般在幾個(gè)微米,要達(dá)到亞微米的分辨率則主要受機(jī)械掃描部件的分辨率和穩(wěn)定性所限制。文獻(xiàn)[46]報(bào)道的位移掃描的分辨率可以達(dá)到0.54微米。然而,當(dāng)所測(cè)光程差較小時(shí),F(xiàn)-P腔前后表面干涉峰值相距很近,難以區(qū)分,此時(shí)時(shí)域解調(diào)方案的應(yīng)用受到了限制。原裝膜厚儀定做價(jià)格總的來說,白光干涉膜厚儀是一種應(yīng)用很廣的測(cè)量薄膜厚度的儀器。
干涉測(cè)量法是一種基于光的干涉原理實(shí)現(xiàn)對(duì)薄膜厚度測(cè)量的光學(xué)方法,是一種高精度的測(cè)量技術(shù),其采用光學(xué)干涉原理的測(cè)量系統(tǒng)具有結(jié)構(gòu)簡(jiǎn)單、成本低廉、穩(wěn)定性高、抗干擾能力強(qiáng)、使用范圍廣等優(yōu)點(diǎn)。對(duì)于大多數(shù)干涉測(cè)量任務(wù),都是通過分析薄膜表面和基底表面之間產(chǎn)生的干涉條紋的形狀和分布規(guī)律,來研究待測(cè)物理量引入的光程差或位相差的變化,從而實(shí)現(xiàn)測(cè)量目的。光學(xué)干涉測(cè)量方法的測(cè)量精度可達(dá)到甚至優(yōu)于納米量級(jí),利用外差干涉進(jìn)行測(cè)量,其精度甚至可以達(dá)到10^-3 nm量級(jí)。根據(jù)所使用的光源不同,干涉測(cè)量方法可分為激光干涉測(cè)量和白光干涉測(cè)量?jī)纱箢?。激光干涉測(cè)量的分辨率更高,但不能實(shí)現(xiàn)對(duì)靜態(tài)信號(hào)的測(cè)量,只能測(cè)量輸出信號(hào)的變化量或連續(xù)信號(hào)的變化,即只能實(shí)現(xiàn)相對(duì)測(cè)量。而白光干涉是通過對(duì)干涉信號(hào)中心條紋的有效識(shí)別來實(shí)現(xiàn)對(duì)物理量的測(cè)量,是一種測(cè)量方式,在薄膜厚度測(cè)量中得到了廣泛的應(yīng)用。
自上世紀(jì)60年代開始,西方的工業(yè)生產(chǎn)線廣泛應(yīng)用基于X及β射線、近紅外光源開發(fā)的在線薄膜測(cè)厚系統(tǒng)。隨著質(zhì)檢需求的不斷增長(zhǎng),20世紀(jì)70年代后,電渦流、超聲波、電磁電容、晶體振蕩等多種膜厚測(cè)量技術(shù)相繼問世。90年代中期,隨著離子輔助、離子束濺射、磁控濺射、凝膠溶膠等新型薄膜制備技術(shù)的出現(xiàn),光學(xué)檢測(cè)技術(shù)也不斷更新迭代,以橢圓偏振法和光度法為主導(dǎo)的高精度、低成本、輕便、高速穩(wěn)固的光學(xué)檢測(cè)技術(shù)迅速占領(lǐng)日用電器和工業(yè)生產(chǎn)市場(chǎng),并發(fā)展出了個(gè)性化定制產(chǎn)品的能力。對(duì)于市場(chǎng)占比較大的微米級(jí)薄膜,除了要求測(cè)量系統(tǒng)具有百納米級(jí)的測(cè)量準(zhǔn)確度和分辨率之外,還需要在存在不規(guī)則環(huán)境干擾的工業(yè)現(xiàn)場(chǎng)下具備較高的穩(wěn)定性和抗干擾能力。隨著技術(shù)的進(jìn)步和應(yīng)用領(lǐng)域的拓展,白光干涉膜厚儀的性能和功能將不斷提升和擴(kuò)展。
白光掃描干涉法利用白光作為光源,通過壓電陶瓷驅(qū)動(dòng)參考鏡進(jìn)行掃描,將干涉條紋掃過被測(cè)面,并通過感知相干峰位置來獲取表面形貌信息。測(cè)量原理如圖1-5所示。然而,在對(duì)薄膜進(jìn)行測(cè)量時(shí),其上下表面的反射會(huì)導(dǎo)致提取出的白光干涉信號(hào)呈現(xiàn)雙峰形式,變得更為復(fù)雜。此外,由于白光掃描干涉法需要進(jìn)行掃描過程,因此測(cè)量時(shí)間較長(zhǎng),且易受外界干擾。基于圖像分割技術(shù)的薄膜結(jié)構(gòu)測(cè)試方法能夠自動(dòng)分離雙峰干涉信號(hào),從而實(shí)現(xiàn)對(duì)薄膜厚度的測(cè)量。膜厚儀依賴于膜層和底部材料的反射率和相位差來實(shí)現(xiàn)這一目的。小型膜厚儀
操作需要一定的專業(yè)技能和經(jīng)驗(yàn),需要進(jìn)行充分的培訓(xùn)和實(shí)踐。測(cè)量膜厚儀生產(chǎn)廠家哪家好
在初始相位為零的情況下,當(dāng)被測(cè)光與參考光之間的光程差為零時(shí),光強(qiáng)度將達(dá)到最大值。為探測(cè)兩個(gè)光束之間的零光程差位置,需要精密Z軸向運(yùn)動(dòng)臺(tái)帶動(dòng)干涉鏡頭作垂直掃描運(yùn)動(dòng)或移動(dòng)載物臺(tái),垂直掃描過程中,用探測(cè)器記錄下干涉光強(qiáng),可得白光干涉信號(hào)強(qiáng)度與Z向掃描位置(兩光束光程差)之間的變化曲線。干涉圖像序列中某波長(zhǎng)處的白光信號(hào)強(qiáng)度隨光程差變化示意圖,曲線中光強(qiáng)極大值位置即為零光程差位置,通過零過程差位置的精密定位,即可實(shí)現(xiàn)樣品表面相對(duì)位移的精密測(cè)量;通過確定最大值對(duì)應(yīng)的Z向位置可獲得被測(cè)樣品表面的三維高度。測(cè)量膜厚儀生產(chǎn)廠家哪家好