江蘇膜厚儀行情

來源: 發(fā)布時間:2023-12-06

傅里葉變換是白光頻域解調(diào)方法中一種低精度的信號解調(diào)方法。早是由G.F.Fernando和T.Liu等人提出,用于低精度光纖法布里-珀羅傳感器的解調(diào)。因此,該解調(diào)方案的原理是通過傅里葉變換得到頻域的峰值頻率從而獲得光程差,進而得到待測物理量的信息。傅里葉變換解調(diào)方案的優(yōu)點是解調(diào)速度較快,受干擾信號的影響較小。但是其測量精度較低。根據(jù)數(shù)字信號處理FFT(快速傅里葉變換)理論,若輸入光源波長范圍為[]λ1,λ2,則所測光程差的理論小分辨率為λ1λ2/(λ2?λ1),所以此方法主要應用于對解調(diào)精度要求不高的場合。傅里葉變換白光干涉法是對傅里葉變換法的改進。該方法總結(jié)起來就是對采集到的光譜信號做傅里葉變換,然后濾波、提取主頻信號后進行逆傅里葉變換,然后做對數(shù)運算,并取其虛部做相位反包裹運算,由獲得的相位得到干涉儀的光程差。該方法經(jīng)過實驗證明其測量精度比傅里葉變換高。白光干涉膜厚測量技術可以實現(xiàn)對不同材料的薄膜進行測量。江蘇膜厚儀行情

采用峰峰值法處理光譜數(shù)據(jù)時,被測光程差的分辨率取決于光譜儀或CCD的分辨率。我們只需獲得相鄰的兩干涉峰值處的波長信息即可得出光程差,不必關心此波長處的光強大小,從而降低數(shù)據(jù)處理的難度。也可以利用多組相鄰的干涉光譜極值對應的波長來分別求出光程差,然后再求平均值作為測量光程差,這樣可以提高該方法的測量精度。但是,峰峰值法存在著一些缺點:當使用寬帶光源作為輸入光源時,接收光譜中不可避免地疊加有與光源同分布的背景光,從而引起峰值處波長的改變,引入測量誤差。同時,當兩干涉信號之間的光程差很小,導致其干涉光譜只有一個干涉峰的時候,此法便不再適用。咸寧膜厚儀出廠價白光干涉膜厚測量技術可以實現(xiàn)對薄膜表面形貌的測量。

常用白光垂直掃描干涉系統(tǒng)的原理示意圖,入射的白光光束通過半反半透鏡進入到顯微干涉物鏡后,被分光鏡分成兩部分,一個部分入射到固定的參考鏡,一部分入射到樣品表面,當參考鏡表面和樣品表面的反射光通過分光鏡后,再次匯聚發(fā)生干涉,干涉光通過透鏡后,利用電荷耦合器(CCD)可探測整個視場內(nèi)雙白光光束的干涉圖像。利用Z向精密位移臺帶動干涉鏡頭或樣品臺Z向掃描,可獲得一系列的干涉圖像。根據(jù)干涉圖像序列中對應點的光強隨光程差變化曲線,可得該點的Z向相對位移;然后,由CCD圖像中每個像素點光強最大值對應的Z向位置獲得被測樣品表面的三維形貌。

光纖白光干涉測量使用的是寬譜光源。光源的輸出光功率和中心波長的穩(wěn)定性是光源選取時需要重點考慮的參數(shù)。論文所設計的解調(diào)系統(tǒng)是通過檢測干涉峰值的中心波長的移動實現(xiàn)的,所以光源中心波長的穩(wěn)定性將對實驗結(jié)果產(chǎn)生很大的影響。實驗中我們所選用的光源是由INPHENIX公司生產(chǎn)的SLED光源,相對于一般的寬帶光源具有輸出功率高、覆蓋光譜范圍寬等特點。該光源采用+5V的直流供電,標定中心波長為1550nm,且其輸出功率在一定范圍內(nèi)是可調(diào)的,驅(qū)動電流可以達到600mA。白光干涉膜厚測量技術可以實現(xiàn)對薄膜的大范圍測量和分析。

論文所研究的鍺膜厚度約300nm,導致其白光干涉輸出光譜只有一個干涉峰,此時常規(guī)基于相鄰干涉峰間距解調(diào)的方案(如峰峰值法等)將不再適用。為此,我們提出了一種基于單峰值波長移動的白光干涉測量方案,并設計搭建了膜厚測量系統(tǒng)。溫度測量實驗結(jié)果表明,峰值波長與溫度變化之間具有良好的線性關系。利用該測量方案,我們測得實驗用鍺膜的厚度為338.8nm,實驗誤差主要來自于溫度控制誤差和光源波長漂移。論文通過對納米級薄膜厚度的測量方案研究,實現(xiàn)了對鍺膜和金膜的厚度測量。論文主要的創(chuàng)新點是提出了白光干涉單峰值波長移動的解調(diào)方案,并將其應用于極短光程差的測量。白光干涉膜厚測量技術可以應用于光學薄膜設計中的薄膜參數(shù)測量。棗莊膜厚儀大概價格多少

白光干涉膜厚測量技術可以通過對干涉曲線的分析實現(xiàn)對薄膜的光學參數(shù)和厚度分布的聯(lián)合測量和分析。江蘇膜厚儀行情

    在白光反射光譜探測模塊中,入射光經(jīng)過分光鏡1分光后,一部分光通過物鏡聚焦到靶丸表面,靶丸殼層上、下表面的反射光經(jīng)過物鏡、分光鏡1、聚焦透鏡、分光鏡2后,一部分光聚焦到光纖端面并到達光譜儀探測器,可實現(xiàn)靶丸殼層白光干涉光譜的測量,一部分光到達CCD探測器,可獲得靶丸表面的光學圖像。靶丸吸附轉(zhuǎn)位模塊和三維運動模塊分別用于靶丸的吸附定位以及靶丸特定角度轉(zhuǎn)位以及靶丸位置的輔助調(diào)整,測量過程中,將靶丸放置于軸系吸嘴前端,通過微型真空泵負壓吸附于吸嘴上;然后,移動位移平臺,將靶丸移動至CCD視場中心,通過Z向位移臺,使靶丸表面成像清晰;利用光譜儀探測靶丸殼層的白光反射光譜;靶丸在軸系的帶動下,平穩(wěn)轉(zhuǎn)位到特定角度,由于軸系的回轉(zhuǎn)誤差,轉(zhuǎn)位后靶丸可能偏移CCD視場中心,此時可通過調(diào)整軸系前端的調(diào)心結(jié)構(gòu),使靶丸定點位于視場中心并采集其白光反射光譜;重復以上步驟,可實現(xiàn)靶丸特定位置或圓周輪廓白光反射光譜數(shù)據(jù)的測量。為減少外界干擾和震動而引起的測量誤差,該裝置放置于氣浮平臺上,通過高性能的隔振效果可保證測量結(jié)果的穩(wěn)定性。 江蘇膜厚儀行情