白光干涉頻域解調(diào)顧名思義是在頻域分析解調(diào)信號,測量裝置與時域解調(diào)裝置幾乎相同,只需把光強(qiáng)測量裝置換為光譜儀或者是CCD,接收到的信號是光強(qiáng)隨著光波長的分布。由于時域解調(diào)中接收到的信號是一定范圍內(nèi)所有波長的光強(qiáng)疊加,因此將頻譜信號中各個波長的光強(qiáng)疊加,即可得到與它對應(yīng)的時域接收信號。由此可見,頻域的白光干涉條紋不僅包含了時域白光干涉條紋的所有信息,還包含了時域干涉條紋中沒有的波長信息。在頻域干涉中,當(dāng)兩束相干光的光程差遠(yuǎn)大于光源的相干長度時,仍可以在光譜儀上觀察到頻域干涉條紋。這是由于光譜儀內(nèi)部的光柵具有分光作用,能夠?qū)捵V光變成窄帶光譜,從而增加了光譜的相干長度。這一解調(diào)技術(shù)的優(yōu)點(diǎn)就是在整個測量系統(tǒng)中沒有使用機(jī)械掃描部件,從而在測量的穩(wěn)定性和可靠性上得到很大的提高。常見的頻域解調(diào)方法有峰峰值檢測法、傅里葉解調(diào)法以及傅里葉變換白光干涉解調(diào)法等。白光干涉膜厚測量技術(shù)可以實(shí)現(xiàn)對薄膜內(nèi)部結(jié)構(gòu)的測量。嘉興膜厚儀常見問題
在白光反射光譜探測模塊中,入射光經(jīng)過分光鏡1分光后,一部分光通過物鏡聚焦到靶丸表面,靶丸殼層上、下表面的反射光經(jīng)過物鏡、分光鏡1、聚焦透鏡、分光鏡2后,一部分光聚焦到光纖端面并到達(dá)光譜儀探測器,可實(shí)現(xiàn)靶丸殼層白光干涉光譜的測量,一部分光到達(dá)CCD探測器,可獲得靶丸表面的光學(xué)圖像。靶丸吸附轉(zhuǎn)位模塊和三維運(yùn)動模塊分別用于靶丸的吸附定位以及靶丸特定角度轉(zhuǎn)位以及靶丸位置的輔助調(diào)整,測量過程中,將靶丸放置于軸系吸嘴前端,通過微型真空泵負(fù)壓吸附于吸嘴上;然后,移動位移平臺,將靶丸移動至CCD視場中心,通過Z向位移臺,使靶丸表面成像清晰;利用光譜儀探測靶丸殼層的白光反射光譜;靶丸在軸系的帶動下,平穩(wěn)轉(zhuǎn)位到特定角度,由于軸系的回轉(zhuǎn)誤差,轉(zhuǎn)位后靶丸可能偏移CCD視場中心,此時可通過調(diào)整軸系前端的調(diào)心結(jié)構(gòu),使靶丸定點(diǎn)位于視場中心并采集其白光反射光譜;重復(fù)以上步驟,可實(shí)現(xiàn)靶丸特定位置或圓周輪廓白光反射光譜數(shù)據(jù)的測量。為減少外界干擾和震動而引起的測量誤差,該裝置放置于氣浮平臺上,通過高性能的隔振效果可保證測量結(jié)果的穩(wěn)定性。 鶴壁膜厚儀誠信企業(yè)推薦白光干涉膜厚測量技術(shù)可以對薄膜的表面和內(nèi)部進(jìn)行聯(lián)合測量和分析。
白光光譜法克服了干涉級次的模糊識別問題,具有動態(tài)測量范圍大,連續(xù)測量時波動范圍小的特點(diǎn),但在實(shí)際測量中,由于測量誤差、儀器誤差、擬合誤差等因素,干涉級次的測量精度仍其受影響,會出現(xiàn)干擾級次的誤判和干擾級次的跳變現(xiàn)象。導(dǎo)致公式計算得到的干擾級次m值與實(shí)際譜峰干涉級次m'(整數(shù))之間有誤差。為得到準(zhǔn)確的干涉級次,本文依據(jù)干涉級次的連續(xù)特性設(shè)計了以下校正流程圖,獲得了靶丸殼層光學(xué)厚度的精確值。導(dǎo)入白光干涉光譜測量曲線。
薄膜是指分子、原子或者是離子在基底表面沉積形成的一種特殊的二維材料。近幾十年來,隨著材料科學(xué)和鍍膜工藝的不斷發(fā)展,厚度在納米量級(幾納米到幾百納米范圍內(nèi))薄膜的研究和應(yīng)用迅速增加。與體材料相比,因?yàn)榧{米薄膜的尺寸很小,使得表面積與體積的比值增加,表面效應(yīng)所表現(xiàn)出的性質(zhì)非常突出,因而在光學(xué)性質(zhì)和電學(xué)性質(zhì)上有許多獨(dú)特的表現(xiàn)。納米薄膜應(yīng)用于傳統(tǒng)光學(xué)領(lǐng)域,在生產(chǎn)實(shí)踐中也得到了越來越廣泛的應(yīng)用,尤其是在光通訊、光學(xué)測量,傳感,微電子器件,生物與醫(yī)學(xué)工程等領(lǐng)域的應(yīng)用空間更為廣闊。白光干涉膜厚測量技術(shù)的研究需要對光學(xué)理論和光學(xué)儀器有較深入的了解。
光學(xué)測厚方法集光學(xué)、機(jī)械、電子、計算機(jī)圖像處理技術(shù)為一體,以其光波長為測量基準(zhǔn),從原理上保證了納米級的測量精度。同時,光學(xué)測厚作為非接觸式的測量方法,被廣泛應(yīng)用于精密元件表面形貌及厚度的無損測量。其中,薄膜厚度光學(xué)測量方法按光吸收、透反射、偏振和干涉等光學(xué)原理可分為分光光度法、橢圓偏振法、干涉法等多種測量方法。不同的測量方法,其適用范圍各有側(cè)重,褒貶不一。因此結(jié)合多種測量方法的多通道式復(fù)合測量法也有研究,如橢圓偏振法和光度法結(jié)合的光譜橢偏法,彩色共焦光譜干涉和白光顯微干涉的結(jié)合法等。白光干涉膜厚測量技術(shù)可以在不同環(huán)境下進(jìn)行測量。洛陽膜厚儀制造廠家
白光干涉膜厚測量技術(shù)可以應(yīng)用于半導(dǎo)體制造中的薄膜厚度控制。嘉興膜厚儀常見問題
白光干涉的相干原理早在1975年就已經(jīng)被提出,隨后于1976年在光纖通信領(lǐng)域中獲得了實(shí)現(xiàn)。1983年,BrianCulshaw的研究小組報道了白光干涉技術(shù)在光纖傳感領(lǐng)域中的應(yīng)用。隨后在1984年,報道了基于白光干涉原理的完整的位移傳感系統(tǒng)。該研究成果證明了白光干涉技術(shù)可以被用于測量能夠轉(zhuǎn)換成位移的物理參量。此后的幾年間,白光干涉應(yīng)用于溫度、壓力等的研究相繼被報道。自上世紀(jì)九十年代以來,白光干涉技術(shù)快速發(fā)展,提供了實(shí)現(xiàn)測量的更多的解決方案。近幾年以來,由于傳感器設(shè)計與研制的進(jìn)步,信號處理新方案的提出,以及傳感器的多路復(fù)用[39]等技術(shù)的發(fā)展,使得白光干涉測量技術(shù)的發(fā)展更加迅速。嘉興膜厚儀常見問題