白光干涉的相干原理早在1975年就已經(jīng)被提出,隨后于1976年在光纖通信領(lǐng)域中獲得了實現(xiàn)。1983年,BrianCulshaw的研究小組報道了白光干涉技術(shù)在光纖傳感領(lǐng)域中的應(yīng)用。隨后在1984年,報道了基于白光干涉原理的完整的位移傳感系統(tǒng)。該研究成果證明了白光干涉技術(shù)可以被用于測量能夠轉(zhuǎn)換成位移的物理參量。此后的幾年間,白光干涉應(yīng)用于溫度、壓力等的研究相繼被報道。自上世紀(jì)九十年代以來,白光干涉技術(shù)快速發(fā)展,提供了實現(xiàn)測量的更多的解決方案。近幾年以來,由于傳感器設(shè)計與研制的進步,信號處理新方案的提出,以及傳感器的多路復(fù)用[39]等技術(shù)的發(fā)展,使得白光干涉測量技術(shù)的發(fā)展更加迅***光干涉膜厚測量技術(shù)可以實現(xiàn)對薄膜的快速測量和分析。珠海品牌膜厚儀
在初始相位為零的情況下,當(dāng)被測光與參考光之間的光程差為零時,光強度將達到最大值。為探測兩個光束之間的零光程差位置,需要精密Z向運動臺帶動干涉鏡頭作垂直掃描運動或移動載物臺,垂直掃描過程中,用探測器記錄下干涉光強,可得白光干涉信號強度與Z向掃描位置(兩光束光程差)之間的變化曲線。干涉圖像序列中某波長處的白光信號強度隨光程差變化示意圖,曲線中光強極大值位置即為零光程差位置,通過零過程差位置的精密定位,即可實現(xiàn)樣品表面相對位移的精密測量;通過確定最大值對應(yīng)的Z向位置可獲得被測樣品表面的三維高度。工廠膜厚儀誠信企業(yè)推薦白光干涉膜厚測量技術(shù)可以對薄膜的厚度、反射率、折射率等光學(xué)參數(shù)進行測量。
采用峰峰值法處理光譜數(shù)據(jù)時,被測光程差的分辨率取決于光譜儀或CCD的分辨率。我們只需獲得相鄰的兩干涉峰值處的波長信息即可得出光程差,不必關(guān)心此波長處的光強大小,從而降低數(shù)據(jù)處理的難度。也可以利用多組相鄰的干涉光譜極值對應(yīng)的波長來分別求出光程差,然后再求平均值作為測量光程差,這樣可以提高該方法的測量精度。但是,峰峰值法存在著一些缺點:當(dāng)使用寬帶光源作為輸入光源時,接收光譜中不可避免地疊加有與光源同分布的背景光,從而引起峰值處波長的改變,引入測量誤差。同時,當(dāng)兩干涉信號之間的光程差很小,導(dǎo)致其干涉光譜只有一個干涉峰的時候,此法便不再適用。
在納米量級薄膜的各項相關(guān)參數(shù)中,薄膜材料的厚度是薄膜設(shè)計和制備過程中的重要參數(shù),是決定薄膜性質(zhì)和性能的基本參量之一,它對于薄膜的光學(xué)、力學(xué)和電磁性能等都有重要的影響[3]。但是由于納米量級薄膜的極小尺寸及其突出的表面效應(yīng),使得對其厚度的準(zhǔn)確測量變得困難。經(jīng)過眾多科研技術(shù)人員的探索和研究,新的薄膜厚度測量理論和測量技術(shù)不斷涌現(xiàn),測量方法實現(xiàn)了從手動到自動,有損到無損測量。由于待測薄膜材料的性質(zhì)不同,其適用的厚度測量方案也不盡相同。對于厚度在納米量級的薄膜,利用光學(xué)原理的測量技術(shù)應(yīng)用。相比于其他方法,光學(xué)測量方法因為具有精度高,速度快,無損測量等優(yōu)勢而成為主要的檢測手段。其中具有代表性的測量方法有橢圓偏振法,干涉法,光譜法,棱鏡耦合法等。白光干涉膜厚測量技術(shù)可以應(yīng)用于生物醫(yī)學(xué)中的薄膜生物學(xué)特性分析。
薄膜是指分子、原子或者是離子在基底表面沉積形成的一種特殊的二維材料。近幾十年來,隨著材料科學(xué)和鍍膜工藝的不斷發(fā)展,厚度在納米量級(幾納米到幾百納米范圍內(nèi))薄膜的研究和應(yīng)用迅速增加。與體材料相比,因為納米薄膜的尺寸很小,使得表面積與體積的比值增加,表面效應(yīng)所表現(xiàn)出的性質(zhì)非常突出,因而在光學(xué)性質(zhì)和電學(xué)性質(zhì)上有許多獨特的表現(xiàn)。納米薄膜應(yīng)用于傳統(tǒng)光學(xué)領(lǐng)域,在生產(chǎn)實踐中也得到了越來越廣泛的應(yīng)用,尤其是在光通訊、光學(xué)測量,傳感,微電子器件,生物與醫(yī)學(xué)工程等領(lǐng)域的應(yīng)用空間更為廣闊。白光干涉膜厚測量技術(shù)可以實現(xiàn)對薄膜的大范圍測量和分析。南充膜厚儀
白光干涉膜厚測量技術(shù)可以應(yīng)用于電子顯示器中的薄膜厚度測量。珠海品牌膜厚儀
為了分析白光反射光譜的測量范圍,開展了不同壁厚的靶丸殼層白光反射光譜測量實驗。圖是不同殼層厚度靶丸的白光反射光譜測量曲線,如圖所示,對于殼層厚度30μm的靶丸,其白光反射光譜各譜峰非常密集、干涉級次數(shù)值大;此外,由于靶丸殼層的吸收,壁厚較大的靶丸信號強度相對較弱。隨著靶丸殼層厚度的進一步增加,其白光反射光譜各譜峰將更加密集,難以實現(xiàn)對各干涉譜峰波長的測量。為實現(xiàn)較大厚度靶丸殼層厚度的白光反射光譜測量,需采用紅外的寬譜光源和光譜探測器。對于殼層厚度為μm的靶丸,測量的波峰相對較少,容易實現(xiàn)靶丸殼層白光反射光譜譜峰波長的準(zhǔn)確測量;隨著靶丸殼層厚度的進一步減小,兩干涉信號之間的光程差差異非常小,以至于他們的光譜信號中只有一個干涉波峰,基于峰值探測的白光反射光譜方法難以實現(xiàn)其厚度的測量;為實現(xiàn)較小厚度靶丸殼層厚度的白光反射光譜測量,可采用紫外的寬譜光源和光譜探測器提升其探測厚度下限。 珠海品牌膜厚儀