Tag標(biāo)簽
  • 進(jìn)口單電極膜片鉗腦片
    進(jìn)口單電極膜片鉗腦片

    全細(xì)胞膜片鉗記錄(whole-cellpatch-clamprecording)是應(yīng)用*早,也是*廣的鉗位技術(shù),它相當(dāng)于連續(xù)的單電極電壓鉗位記錄,也就是說全細(xì)胞記錄類似于傳統(tǒng)的細(xì)胞內(nèi)記錄,但它具有更大的優(yōu)越性,如高分辨率、低噪聲、極好的穩(wěn)定性以及能控制細(xì)胞內(nèi)的成分等。全細(xì)胞記錄技采測定的是一個(gè)細(xì)胞內(nèi)全部**通道的電流,記錄過程中電極的溶液取代了原細(xì)胞質(zhì)的成分。雖然膜片鉗記錄技術(shù)與*初的單電極電壓鉗位相比進(jìn)步了很多,尤其在單離子通道鉗位記錄方面,細(xì)胞或腦片的組織選擇及實(shí)驗(yàn)溶液的制備仍然是很重要的步驟。滔博生物TOP-Bright專注基于多種離子通道靶點(diǎn)的化合物體外篩選,服務(wù)于全球藥企的膜片鉗公司...

  • 進(jìn)口高通量全自動(dòng)膜片鉗專題
    進(jìn)口高通量全自動(dòng)膜片鉗專題

    對單細(xì)胞形態(tài)與功能關(guān)系的研究,將膜片鉗技術(shù)與單細(xì)胞逆轉(zhuǎn)錄多聚酶鏈?zhǔn)欠磻?yīng)技術(shù)結(jié)合,在全細(xì)胞膜片鉗記錄下,將單細(xì)胞內(nèi)容物或整個(gè)細(xì)胞(包括細(xì)胞膜)吸入電極中,將細(xì)胞內(nèi)存在的各種mRNA全部快速逆轉(zhuǎn)錄成cDNA,再經(jīng)常規(guī)PCR擴(kuò)增及待檢的特異mRNA的檢測,借此可對形態(tài)相似而電活動(dòng)不同的結(jié)果做出分子水平的解釋或?yàn)閱渭?xì)胞逆轉(zhuǎn)錄多聚酶鏈?zhǔn)椒磻?yīng)提供標(biāo)本,為同一結(jié)構(gòu)中形態(tài)非常相似但功能不同的事實(shí)提供分子水平的解釋。目前國際上掌握此技術(shù)的實(shí)驗(yàn)室較少,我國北京大學(xué)神經(jīng)科學(xué)研究所于1994年在國內(nèi)率先開展。膜片鉗的膜電容檢測與碳纖電極電化學(xué)檢測聯(lián)合運(yùn)用的技術(shù)。進(jìn)口高通量全自動(dòng)膜片鉗專題20世紀(jì)初由Cole發(fā)明,Ho...

  • 日本可升級膜片鉗廠家
    日本可升級膜片鉗廠家

    細(xì)胞是動(dòng)物和人體的基本單元,細(xì)胞與細(xì)胞內(nèi)的通信是依靠其膜上的離子通道進(jìn)行的,離子和離子通道是細(xì)胞興奮的基礎(chǔ),亦即產(chǎn)生生物電信號的基礎(chǔ),生物電信號通常用電學(xué)或電子學(xué)方法進(jìn)行測量。由此形成了一門細(xì)胞學(xué)科--電生理學(xué)。膜片鉗技術(shù)已成為研究離子通道的黃金標(biāo)準(zhǔn)。電壓門控性離子通道:膜上通道蛋白的帶點(diǎn)集團(tuán)在膜電位改變時(shí),在電場的作用下,重新分布導(dǎo)致通道的關(guān)閉,同時(shí)有電荷移動(dòng),稱為門控電流。配體門控離子通道:神經(jīng)遞質(zhì)(如乙酰膽堿)、ji素等與通道蛋白上的特定位點(diǎn)結(jié)合,引起蛋白構(gòu)像的改變,導(dǎo)致通道的打開。滔博生物TOP-Bright專注基于多種離子通道靶點(diǎn)的化合物體外篩選,服務(wù)于全球藥企的膜片鉗公司,快速獲得...

  • 日本全自動(dòng)膜片鉗系統(tǒng)
    日本全自動(dòng)膜片鉗系統(tǒng)

    在形成高阻抗封接后,記錄實(shí)驗(yàn)結(jié)果之前,通常要根據(jù)實(shí)驗(yàn)的要求進(jìn)行參數(shù)補(bǔ)償,以期獲得符合實(shí)際的結(jié)果。需要注意的是,應(yīng)恰當(dāng)設(shè)置放大器的帶寬,例如10kHz,這樣在電流監(jiān)測端將觀察不到超越此頻帶以外的無用信息。膜片鉗實(shí)驗(yàn)難度大、技術(shù)要求高,要掌握有關(guān)技術(shù)和方法雖不是很困難的事,但要從一大批的實(shí)驗(yàn)數(shù)據(jù)中,經(jīng)過處理和分析,得出有意義、有價(jià)值的結(jié)果和結(jié)論,就顯得不那么容易,有許多需要注意和考慮的問題,包括減少噪音,避免電極前端的污染,提高封接成功率,具體實(shí)驗(yàn)過程中還需要考慮如何選取記錄模式,為記錄特定離子電流如何選擇電極內(nèi)、外液,如何選擇阻斷劑、激動(dòng)劑,如何進(jìn)行正確的數(shù)據(jù)采集等許多更為復(fù)雜的問題,還需在科研...

  • 美國腦片膜片鉗價(jià)格
    美國腦片膜片鉗價(jià)格

    電壓鉗技術(shù),是20世紀(jì)初由Cole發(fā)明,Hodgkin和Huxley完善,其設(shè)計(jì)的主要目的是為了證明動(dòng)作電位的產(chǎn)生機(jī)制,即動(dòng)作電位的峰電位是由于膜對鈉的通透性發(fā)生了一過性的增大過程。但當(dāng)時(shí)沒有直接測定膜通透性的方法,于是就用膜對某種離子的電導(dǎo)來**該種離子的通透性,膜電導(dǎo)測定的依據(jù)是電學(xué)中的歐姆定律,如膜的Na電導(dǎo)GNa與電化學(xué)驅(qū)動(dòng)力(Em-ENa)和膜電流INa的關(guān)系GNa=INa/(Em-ENa).因此可通過測量膜電流,再利用歐姆定律來計(jì)算膜電導(dǎo),但是,利用膜電流來計(jì)算膜電導(dǎo)時(shí),記錄膜電流期間的膜電位必須保持不變,否則膜電流的變化就不能**膜電導(dǎo)的變化。這一條件是利用電壓鉗技術(shù)實(shí)現(xiàn)的。下張...

  • 芬蘭全細(xì)胞膜片鉗腦片
    芬蘭全細(xì)胞膜片鉗腦片

    把膜電位鉗位電壓調(diào)到-80--100mV,再用鉗位放大器的控制鍵把全細(xì)胞瞬態(tài)充電電流調(diào)定至零位(EPC-10的控制鍵稱為C-slow和C-series;Axopatch200標(biāo)為全細(xì)胞電容和系列電阻)。寫下細(xì)胞的電容值Cc和未補(bǔ)整的系列電阻值Rs,用于消除全細(xì)胞瞬態(tài)電流,計(jì)算鉗位的固定時(shí)間(即RsCc),然啟根據(jù)歐姆定律從測定脈沖電流的振幅算出細(xì)胞的電阻RC。緩慢調(diào)節(jié)Rs旋鈕注意測定脈沖反應(yīng)的變化,逐漸增加補(bǔ)整的比例。如果RS補(bǔ)整非常接近振蕩的閾值,RS或Cc的微細(xì)變化都會(huì)達(dá)到震蕩的閾值,產(chǎn)生電壓的振蕩而使細(xì)胞受損。因此應(yīng)當(dāng)在RS補(bǔ)整水平寫不穩(wěn)定閾值之間留有10%-20%的余地為安全。準(zhǔn)備資料...

  • 日本高通量全自動(dòng)膜片鉗參數(shù)
    日本高通量全自動(dòng)膜片鉗參數(shù)

    電壓鉗的缺點(diǎn)∶電壓鉗技術(shù)目前主要用于巨火細(xì)胞的全細(xì)胞電流研究,特別在分子克隆的卵母細(xì)胞表達(dá)電流的鑒定中發(fā)揮其它技術(shù)不能替代的作用。但也有其致命的弱點(diǎn)1、微電極需刺破細(xì)胞膜進(jìn)入細(xì)胞,以致造成細(xì)胞漿流失,破壞了細(xì)胞生理功能的完整性;2、不能測定單一通道電流。因?yàn)殡妷恒Q制的膜面積很大,包含著大量隨機(jī)開放和關(guān)閉著的通道,而且背景噪音大,往往掩蓋了單一通道的電流。3、對體積小的細(xì)胞(如哺乳類***元,直徑在10-30μm之間)進(jìn)行電壓鉗實(shí)驗(yàn),技術(shù)上有更大的困難。由于電極需插入細(xì)胞,不得不將微電極的前列做得很細(xì),如此細(xì)的前列致使電極阻抗很大,常常是60~-8OMΩ或120~150MΩ(取決于不同的充灌液)...

  • 進(jìn)口雙電極膜片鉗電壓鉗制
    進(jìn)口雙電極膜片鉗電壓鉗制

    把膜電位鉗位電壓調(diào)到-80--100mV,再用鉗位放大器的控制鍵把全細(xì)胞瞬態(tài)充電電流調(diào)定至零位(EPC-10的控制鍵稱為C-slow和C-series;Axopatch200標(biāo)為全細(xì)胞電容和系列電阻)。寫下細(xì)胞的電容值Cc和未補(bǔ)整的系列電阻值Rs,用于消除全細(xì)胞瞬態(tài)電流,計(jì)算鉗位的固定時(shí)間(即RsCc),然啟根據(jù)歐姆定律從測定脈沖電流的振幅算出細(xì)胞的電阻RC。緩慢調(diào)節(jié)Rs旋鈕注意測定脈沖反應(yīng)的變化,逐漸增加補(bǔ)整的比例。如果RS補(bǔ)整非常接近振蕩的閾值,RS或Cc的微細(xì)變化都會(huì)達(dá)到震蕩的閾值,產(chǎn)生電壓的振蕩而使細(xì)胞受損。因此應(yīng)當(dāng)在RS補(bǔ)整水平寫不穩(wěn)定閾值之間留有10%-20%的余地為安全。準(zhǔn)備資料...

  • 日本細(xì)胞膜片鉗蛋白質(zhì)分子水平
    日本細(xì)胞膜片鉗蛋白質(zhì)分子水平

    實(shí)驗(yàn)溶液浸溶細(xì)胞溶液和微電極玻璃管內(nèi)的填充液成分對全細(xì)胞膜片鉗記錄也是很重要的內(nèi)容,這關(guān)系到封接的容易程度、細(xì)胞存活狀態(tài)及膜電位的狀態(tài)等。在實(shí)驗(yàn)記錄過程中,尤其是神經(jīng)生物學(xué)實(shí)驗(yàn),需要迅速更換細(xì)胞浸溶液濃度以免受體敏感性降低(desensitization)或需要模擬快速突觸反應(yīng)的壽命。原則上細(xì)胞的浸溶液成分或玻璃管內(nèi)填充液成分應(yīng)該與細(xì)胞外或細(xì)胞內(nèi)間質(zhì)的成分相似,實(shí)際研究中,為了探討某些通道或電位特性,對這些實(shí)驗(yàn)溶液的成分或濃度會(huì)作必要調(diào)整,沒有哪種溶液是理想的。離子通道探索之旅,從選擇膜片鉗開始!日本細(xì)胞膜片鉗蛋白質(zhì)分子水平高阻封接技術(shù)還明顯降低了電流記錄的背景噪聲,從而戲劇性地提高了時(shí)間、空...

  • 雙分子層膜片鉗高阻抗封接
    雙分子層膜片鉗高阻抗封接

    膜片鉗技術(shù)(patch clamp techniques)是采用鉗制電壓或電流的方法對生物膜上離子通道的電活動(dòng)進(jìn)行記錄的微電極技術(shù)。1989年,Blanton將腦片電生理記錄與細(xì)胞的膜片鉗記錄結(jié)合起來,建立了腦片膜片鉗記錄技術(shù)(patch clamp on invitro brains lices),這為在細(xì)胞水平研究反射中樞系統(tǒng)離子通道或受體在神經(jīng)環(huán)路中的生理和藥理學(xué)作用及其機(jī)制提供了可能性。離體的腦組織能夠在一定的溫度、酸度和滲透壓、通氧狀態(tài)等條件下存活并保持良好的生理狀態(tài)。與急性分離的或培養(yǎng)的神經(jīng)元相比,離體腦片中的神經(jīng)元更接近生理狀態(tài):基本保持了在體情況下的細(xì)胞形態(tài),神經(jīng)細(xì)胞之間及神經(jīng)...

  • 芬蘭全細(xì)胞膜片鉗蛋白質(zhì)分子水平
    芬蘭全細(xì)胞膜片鉗蛋白質(zhì)分子水平

    資料分析:一般電學(xué)性質(zhì)∶通過I/V關(guān)系計(jì)算得到單通道電導(dǎo),觀察通道有無整流。通過離子選擇性、翻轉(zhuǎn)電位或其它通道的條件初步確定通道類型。通道動(dòng)力學(xué)分析∶開放時(shí)間、開放概率、關(guān)閉時(shí)間、通道的時(shí)間依賴性失活、開放與關(guān)閉類型(簇狀猝發(fā),Burst)樣開放與閃動(dòng)樣短暫關(guān)閉(flickering),化學(xué)門控性通道的開、關(guān)速率常數(shù)等數(shù)據(jù)。藥理學(xué)研究∶研究的藥物,阻斷劑、激動(dòng)劑或其它調(diào)制因素對通道活動(dòng)的影響情況。綜合分析得出結(jié)淪。滔博生物TOP-Bright專注基于多種離子通道靶點(diǎn)的化合物體外篩選,服務(wù)于全球藥企的膜片鉗公司,快速獲得實(shí)驗(yàn)結(jié)果,專業(yè)團(tuán)隊(duì),7*26小時(shí)隨時(shí)人工在線咨詢.膜片鉗|膜片鉗實(shí)驗(yàn)外包價(jià)格...

  • 德國全自動(dòng)膜片鉗哪家好
    德國全自動(dòng)膜片鉗哪家好

    細(xì)胞是動(dòng)物和人體的基本單元,細(xì)胞與細(xì)胞內(nèi)的通信是依靠其膜上的離子通道進(jìn)行的,離子和離子通道是細(xì)胞興奮的基礎(chǔ),亦即產(chǎn)生生物電信號的基礎(chǔ),生物電信號通常用電學(xué)或電子學(xué)方法進(jìn)行測量。由此形成了一門細(xì)胞學(xué)科--電生理學(xué)。膜片鉗技術(shù)已成為研究離子通道的黃金標(biāo)準(zhǔn)。電壓門控性離子通道:膜上通道蛋白的帶點(diǎn)集團(tuán)在膜電位改變時(shí),在電場的作用下,重新分布導(dǎo)致通道的關(guān)閉,同時(shí)有電荷移動(dòng),稱為門控電流。配體門控離子通道:神經(jīng)遞質(zhì)(如乙酰膽堿)、ji素等與通道蛋白上的特定位點(diǎn)結(jié)合,引起蛋白構(gòu)像的改變,導(dǎo)致通道的打開。由通道蛋白介導(dǎo)的膜電導(dǎo)構(gòu)成了膜反應(yīng)的主動(dòng)成分,它的電流電壓關(guān)系是非線性的。德國全自動(dòng)膜片鉗哪家好高阻封接問...

  • 德國細(xì)胞膜片鉗解決方案
    德國細(xì)胞膜片鉗解決方案

    電壓鉗技術(shù)是由科爾發(fā)明的,并在20世紀(jì)初由霍奇金和赫胥黎完善。其設(shè)計(jì)的主要目的是證明動(dòng)作電位的產(chǎn)生機(jī)制,即動(dòng)作電位的峰值電位是由于膜對鈉的通透性瞬間增加。但當(dāng)時(shí)還沒有直接測量膜通透性的方法,所以用膜電導(dǎo)來測量離子通透性。膜電導(dǎo)測量的基礎(chǔ)是電學(xué)中的歐姆定律,如膜Na電導(dǎo)GNa與電化學(xué)驅(qū)動(dòng)力(Em-ENa)的關(guān)系,膜電流INaGNa=INa/(Em-ENa)。因此,可以通過測量膜電流,然后利用歐姆定律來計(jì)算膜電導(dǎo)。然而,膜電導(dǎo)可以通過使用膜電流來計(jì)算。這個(gè)條件是通過電壓鉗技術(shù)實(shí)現(xiàn)的。下一張幻燈片中右邊的兩張圖顯示了squid的動(dòng)作電位和動(dòng)作電位過程中膜電流的變化,這是霍奇金和赫胥黎在半個(gè)世紀(jì)前用電...

  • 芬蘭單電極膜片鉗專題
    芬蘭單電極膜片鉗專題

    電壓鉗的缺點(diǎn):目前電壓鉗技術(shù)主要用于研究巨火細(xì)胞的全細(xì)胞電流,特別是在分子克隆卵母細(xì)胞表達(dá)電流的鑒定中,發(fā)揮著不可替代的作用。然而,它也有其致命的弱點(diǎn):1。微電極需要刺穿細(xì)胞膜進(jìn)入細(xì)胞,導(dǎo)致細(xì)胞質(zhì)丟失,破壞細(xì)胞生理功能的完整性;2、不能確定單通道電流。由于電壓鉗位薄膜面積大,包含大量隨機(jī)開關(guān)的通道,背景噪聲大,往往會(huì)掩蓋單通道的電流。3.在小細(xì)胞(如直徑10-30μm的哺乳動(dòng)物細(xì)胞)上進(jìn)行電壓鉗實(shí)驗(yàn),技術(shù)難度更大。因?yàn)殡姌O需要插入到細(xì)胞中,所以微電極的前端必須做得非常薄。如此薄的前端導(dǎo)致電極阻抗較大,往往為60~-80mω或120~150MΩ(視灌注液不同而定)。如此大的電極阻抗,不利于用細(xì)胞...

  • 芬蘭多通道膜片鉗哪家好
    芬蘭多通道膜片鉗哪家好

    膜片鉗放大器的工作模式;(1)電壓鉗制模式:在鉗制細(xì)胞膜電位的基礎(chǔ)上改變膜電位,記錄離子通道電流的變化,如通道電流;EPSC;IPSC等電流信號它是膜片鉗的基本工作模式。(2)屯留鉗向細(xì)胞注入刺激電流,記錄膜電位對刺激電流的響應(yīng)。記錄的是動(dòng)作電位,EPSP;IPSP等電壓信號膜片鉗技術(shù)實(shí)現(xiàn)膜電位固定的關(guān)鍵是在玻璃微電極前沿與細(xì)胞膜之間形成高阻(10GΩ)密封,使與電極前開口相連的細(xì)胞膜與周圍環(huán)境電隔離,通過施加指令電壓來鉗制膜電位。膜片鉗,您研究離子通道功能的得力助手!芬蘭多通道膜片鉗哪家好膜片鉗技術(shù)的創(chuàng)立取代了電壓鉗技術(shù),是細(xì)胞電生理研究的一個(gè)飛躍,使得離子通道的研究,從宏觀深入到微觀,使昔...

  • 雙分子層膜片鉗技術(shù)
    雙分子層膜片鉗技術(shù)

    膜片鉗的基本原理則是利用負(fù)反饋電子線路,將微電極前列所吸附的一個(gè)至幾個(gè)平方微米的細(xì)胞膜的電位固定在一定水平上,對通過通道的微小離子電流作動(dòng)態(tài)或靜態(tài)觀察,從而研究其功能。膜片鉗技術(shù)實(shí)現(xiàn)膜電流固定的關(guān)鍵步驟是在玻璃微電極前列邊緣與細(xì)胞膜之間形成高阻密封,其阻抗數(shù)值可達(dá)10~100GΩ(此密封電阻是指微電極內(nèi)與細(xì)胞外液之間的電阻)。由于此阻值如此之高,故基本上可看成絕緣,其上之電流可看成零,形成高阻密封的力主要有氫健、范德華力、鹽鍵等。此密封不僅電學(xué)上近乎絕緣,在機(jī)械上也是較牢固的。又由于玻璃微電極前列管徑很小,其下膜面積只約1μm2,在這么小的面積上離子通道數(shù)量很少,一般只有一個(gè)或幾個(gè)通道,經(jīng)這一...

  • 德國全自動(dòng)膜片鉗實(shí)驗(yàn)操作
    德國全自動(dòng)膜片鉗實(shí)驗(yàn)操作

    膜片鉗的基本原理則是利用負(fù)反饋電子線路,將微電極前列所吸附的一個(gè)至幾個(gè)平方微米的細(xì)胞膜的電位固定在一定水平上,對通過通道的微小離子電流作動(dòng)態(tài)或靜態(tài)觀察,從而研究其功能。膜片鉗技術(shù)實(shí)現(xiàn)膜電流固定的關(guān)鍵步驟是在玻璃微電極前列邊緣與細(xì)胞膜之間形成高阻密封,其阻抗數(shù)值可達(dá)10~100GΩ(此密封電阻是指微電極內(nèi)與細(xì)胞外液之間的電阻)。由于此阻值如此之高,故基本上可看成絕緣,其上之電流可看成零,形成高阻密封的力主要有氫健、范德華力、鹽鍵等。此密封不僅電學(xué)上近乎絕緣,在機(jī)械上也是較牢固的。又由于玻璃微電極前列管徑很小,其下膜面積只約1μm2,在這么小的面積上離子通道數(shù)量很少,一般只有一個(gè)或幾個(gè)通道,經(jīng)這一...

  • 進(jìn)口單電極膜片鉗專題
    進(jìn)口單電極膜片鉗專題

    鈣成像技術(shù)被廣泛應(yīng)用于實(shí)時(shí)監(jiān)測神經(jīng)元、心肌以及多種細(xì)胞胞內(nèi)鈣離子的變化,從而檢測神經(jīng)元、心肌的活動(dòng)情況。這些技術(shù)是人們觀測神經(jīng)以及多種細(xì)胞活動(dòng)為直接的手段,現(xiàn)已發(fā)展為生命科學(xué)研究的熱點(diǎn),也是國家自然科學(xué)基金等鼓勵(lì)申報(bào)的重要領(lǐng)域。光遺傳學(xué)調(diào)控技術(shù)是近幾年正在迅速發(fā)展的一項(xiàng)整合了光學(xué)、基因操作技術(shù)、電生理等多學(xué)科交叉的生物技術(shù)。NatureMethods雜志將此技術(shù)評為"Methodoftheyear2010"[19];美國麻省理工學(xué)院科技評述(MITTechnologyReview,2010)在其總結(jié)性文章"Theyearinbiomedicine"中指出:光遺傳學(xué)調(diào)控技術(shù)現(xiàn)已經(jīng)迅速成為生命科學(xué)...

  • 日本單電極膜片鉗多少錢
    日本單電極膜片鉗多少錢

    膜片鉗在通道研究中的重要作用用膜片鉗技術(shù)可以直接觀察和分辨單離子通道電流及其開閉時(shí)程、區(qū)分離子通道的離子選擇性、同時(shí)可發(fā)現(xiàn)新的離子通道及亞型,并能在記錄單細(xì)胞電流和全細(xì)胞電流的基礎(chǔ)上進(jìn)一步計(jì)算出細(xì)胞膜上的通道數(shù)和開放概率,還可以用以研究某些胞內(nèi)或胞外物質(zhì)對離子通道開閉及通道電流的影響等。同時(shí)用于研究細(xì)胞信號的跨膜轉(zhuǎn)導(dǎo)和細(xì)胞分泌機(jī)制。結(jié)合分子克隆和定點(diǎn)突變技術(shù),膜片鉗技術(shù)可用于離子通道分子結(jié)構(gòu)與生物學(xué)功能關(guān)系的研究。利用膜片鉗技術(shù)還可以用于藥物在其靶受體上作用位點(diǎn)的分析。如神經(jīng)元煙堿受體為配體門控性離子通道,膜片鉗全細(xì)胞記錄技術(shù)通過記錄煙堿誘發(fā)電流,可直觀地反映出神經(jīng)元煙堿受體活動(dòng)的全過程,包括...

  • 芬蘭全細(xì)胞膜片鉗腦片
    芬蘭全細(xì)胞膜片鉗腦片

    1976年德國馬普生物物理化學(xué)研究所Neher和Sakmann在青蛙肌細(xì)胞上用雙電極鉗制膜電位的同時(shí),記錄到ACh的單通道離子電流,從而產(chǎn)生了膜片鉗技術(shù)。1980年Sigworth等在記錄電極內(nèi)施加5-50cmH2O的負(fù)壓吸引,得到10-100GΩ的高阻封接(Giga-seal),明顯降低了記錄時(shí)的噪聲實(shí)現(xiàn)了單根電極既鉗制膜片電位又記錄單通道電流的突破。1981年Hamill和Neher等對該技術(shù)進(jìn)行了改進(jìn),引進(jìn)了膜片游離技術(shù)和全細(xì)胞記錄技術(shù),從而使該技術(shù)更趨完善,具有1pA的電流靈敏度、1μm的空間分辨率和10μs的時(shí)間分辨率。1983年10月,《Single-ChannelRecordin...

  • 芬蘭腦片膜片鉗單細(xì)胞
    芬蘭腦片膜片鉗單細(xì)胞

    膜片鉗技術(shù)的建立。拋光并填充玻璃管微電極,并將其固定在電極支架中。2.通過與電極支架連接的導(dǎo)管向微電極施加壓力,直到電極浸入記錄槽溶液中。3.當(dāng)電極浸入溶液中時(shí),給電極一個(gè)測量脈沖(命令電壓,如5-10ms,10mV)讀取電流,根據(jù)歐姆定律計(jì)算電阻。4.通過膜片鉗放大器的控制鍵將微電極前端的連接電位調(diào)至零。這種電勢差是由電極中的填充溶液和浸浴之間的不同離子成分的遷移引起的。5.用顯微操作器將微電極前緣靠近直視下待記錄的細(xì)胞表面,觀察電流的變化,直至阻抗達(dá)到1gω以上,形成“干封”6。將靜息膜電位調(diào)整到預(yù)期的鉗制電壓水平,這樣當(dāng)細(xì)胞沒有鉗制到零時(shí),放大器可以從“搜索”變?yōu)椤半妷恒Q制”。膜電導(dǎo)測定...

  • 單通道膜片鉗研究
    單通道膜片鉗研究

    實(shí)驗(yàn)溶液浸溶細(xì)胞溶液和微電極玻璃管內(nèi)的填充液成分對全細(xì)胞膜片鉗記錄也是很重要的內(nèi)容,這關(guān)系到封接的容易程度、細(xì)胞存活狀態(tài)及膜電位的狀態(tài)等。在實(shí)驗(yàn)記錄過程中,尤其是神經(jīng)生物學(xué)實(shí)驗(yàn),需要迅速更換細(xì)胞浸溶液濃度以免受體敏感性降低(desensitization)或需要模擬快速突觸反應(yīng)的壽命。原則上細(xì)胞的浸溶液成分或玻璃管內(nèi)填充液成分應(yīng)該與細(xì)胞外或細(xì)胞內(nèi)間質(zhì)的成分相似,實(shí)際研究中,為了探討某些通道或電位特性,對這些實(shí)驗(yàn)溶液的成分或濃度會(huì)作必要調(diào)整,沒有哪種溶液是理想的。滔博生物TOP-Bright專注基于多種離子通道靶點(diǎn)的化合物體外篩選,服務(wù)于全球藥企的膜片鉗公司,快速獲得實(shí)驗(yàn)結(jié)果,專業(yè)團(tuán)隊(duì),7*46...

  • 美國高通量全自動(dòng)膜片鉗專題
    美國高通量全自動(dòng)膜片鉗專題

    膜片鉗技術(shù)的建立1.拋光及填充好玻璃管微電極,并將它固定在電極夾持器中。2.通過一個(gè)與電極夾持器連接的導(dǎo)管給微電極內(nèi)一個(gè)壓力,一直到電極浸入記錄槽溶液中。3.當(dāng)電極浸沒在溶液中時(shí)給電極一個(gè)測定脈沖(命令電壓,如5-10ms,10mV)讀出電流,按照歐姆定律計(jì)算電阻。4.通過膜片鉗放大器的控制鍵將微電極前列的連接電位(junctionpotentials)調(diào)至零位,這種電位差是由于電極內(nèi)填充溶液與浸浴液不同離子成分的遷移造成的。5.用微操縱器將微電極前列在直視下靠近要記錄的細(xì)胞表面,并觀察電流的變化,直至阻抗達(dá)到1GΩ以上形成"干兆封接"6.調(diào)整靜息膜電位到期望的鉗位電壓的水平,使放大器從"搜尋...

  • 可升級膜片鉗研究
    可升級膜片鉗研究

    這一設(shè)計(jì)模式似乎幾十年都沒有改變過,作為一個(gè)有著近20年膜片鉗經(jīng)驗(yàn)的科研工作者,記得自己進(jìn)入實(shí)驗(yàn)室次看到的放大器就差不多是這樣,也不覺得還會(huì)有什么變化。直到筆者在19年訪問歐洲的一個(gè)同樣做電生理的實(shí)驗(yàn)室的時(shí)候,發(fā)現(xiàn)了這樣一款獨(dú)特的放大器,讓筆者眼前一亮,這款放大器從前置放大器出來的線竟然就直接連接在了電腦上,當(dāng)筆者問他們放大器和數(shù)模呢?他們說,你看到的就是全部了,所以的部件都包含在了這個(gè)前置放大器中。滔博生物TOP-Bright專注基于多種離子通道靶點(diǎn)的化合物體外篩選,服務(wù)于全球藥企的膜片鉗公司,快速獲得實(shí)驗(yàn)結(jié)果,專業(yè)團(tuán)隊(duì),7*63小時(shí)隨時(shí)人工在線咨詢.膜片鉗技術(shù)原理膜片鉗技術(shù)是用玻璃微電極接...

  • 進(jìn)口腦片膜片鉗電流鉗制
    進(jìn)口腦片膜片鉗電流鉗制

    高阻封接問題的解決不僅改善了電流記錄性能,還隨之出現(xiàn)了研究通道電流的多種膜片鉗方式。根據(jù)不同的研究目的,可制成不同的膜片構(gòu)型。(1)細(xì)胞吸附膜片(cell-attachedpatch)將兩次拉制后經(jīng)加熱拋光的微管電極置于清潔的細(xì)胞膜表面上,形成高阻封接,在細(xì)胞膜表面隔離出一小片膜,既而通過微管電極對膜片進(jìn)行電壓鉗制,分辨測量膜電流,稱為細(xì)胞貼附膜片。由于不破壞細(xì)胞的完整性,這種方式又稱為細(xì)胞膜上的膜片記錄。此時(shí)跨膜電位由玻管固定電位和細(xì)胞電位決定。因此,為測定膜片兩側(cè)的電位,需測定細(xì)胞膜電位并從該電位減去玻管電位。從膜片的通道活動(dòng)看,這種形式的膜片是極穩(wěn)定的,因細(xì)胞骨架及有關(guān)代謝過程是完整的,...

  • 美國單電極膜片鉗實(shí)驗(yàn)操作
    美國單電極膜片鉗實(shí)驗(yàn)操作

    膜片鉗的應(yīng)用范圍:1.單離子通道(如鈉、鉀)的功能研究;2.心肌細(xì)胞離子通道研究(尤其與藥物作用相關(guān)的);3.常規(guī)與病理的離子通道作用機(jī)制研究;4.單細(xì)胞的形態(tài)與功能關(guān)系的研究;5.心血管藥理學(xué)的研究;6.腦片膜片鉗(證實(shí)了腦組織在體外也能存活并保持很好的活性狀態(tài),能使對腦細(xì)胞的研究更接近生理狀態(tài)下的情況,可檢驗(yàn)不同腦區(qū)間的神經(jīng)通路與功能鏈接);7.神經(jīng)環(huán)路的研究(光遺傳或化學(xué)遺傳病毒載體表達(dá)的驗(yàn)證);8.神經(jīng)突觸可塑性的研究。電壓鉗技術(shù)的主要在于將膜電位固定在指令電壓的水平,這樣才能研究在給定膜電位下膜電流隨時(shí)間的變化關(guān)系。美國單電極膜片鉗實(shí)驗(yàn)操作電壓鉗的缺點(diǎn)∶電壓鉗技術(shù)目前主要用于巨火細(xì)胞...

  • 德國單通道膜片鉗蛋白質(zhì)分子水平
    德國單通道膜片鉗蛋白質(zhì)分子水平

    對單細(xì)胞形態(tài)與功能關(guān)系的研究,將膜片鉗技術(shù)與單細(xì)胞逆轉(zhuǎn)錄多聚酶鏈?zhǔn)欠磻?yīng)技術(shù)結(jié)合,在全細(xì)胞膜片鉗記錄下,將單細(xì)胞內(nèi)容物或整個(gè)細(xì)胞(包括細(xì)胞膜)吸入電極中,將細(xì)胞內(nèi)存在的各種mRNA全部快速逆轉(zhuǎn)錄成cDNA,再經(jīng)常規(guī)PCR擴(kuò)增及待檢的特異mRNA的檢測,借此可對形態(tài)相似而電活動(dòng)不同的結(jié)果做出分子水平的解釋或?yàn)閱渭?xì)胞逆轉(zhuǎn)錄多聚酶鏈?zhǔn)椒磻?yīng)提供標(biāo)本,為同一結(jié)構(gòu)中形態(tài)非常相似但功能不同的事實(shí)提供分子水平的解釋。目前國際上掌握此技術(shù)的實(shí)驗(yàn)室較少,我國北京大學(xué)神經(jīng)科學(xué)研究所于1994年在國內(nèi)率先開展。準(zhǔn)確捕捉離子通道動(dòng)態(tài),膜片鉗技術(shù)助您一臂之力!德國單通道膜片鉗蛋白質(zhì)分子水平對電極持續(xù)施加一個(gè)1mV、10~5...

  • 美國全自動(dòng)膜片鉗專題
    美國全自動(dòng)膜片鉗專題

    膜片鉗技術(shù)原理:膜片鉗技術(shù)是用玻璃微電極吸管把只含1-3個(gè)離子通道、面積為幾個(gè)平方微米的細(xì)胞膜通過負(fù)壓吸引封接起來(見右圖),由于電極前列與細(xì)胞膜的高阻封接,在電極前列籠罩下的那片膜事實(shí)上與膜的其他部分從電學(xué)上隔離,因此,此片膜內(nèi)開放所產(chǎn)生的電流流進(jìn)玻璃吸管,用一個(gè)極為敏感的電流監(jiān)視器(膜片鉗放大器)測量此電流強(qiáng)度,就單一離子通道電流膜片鉗技術(shù)的建立,對生物學(xué)科學(xué)特別是神經(jīng)科學(xué)是一資有重大意義的變革。這是一種以記錄通過離子通道的離子電流來反映細(xì)胞膜單一的(或多個(gè)的離子通道分子活動(dòng)的技術(shù)。膜片鉗實(shí)驗(yàn)服務(wù)|離子通道|膜片鉗CRO|因斯蔻浦。美國全自動(dòng)膜片鉗專題全細(xì)胞膜片鉗記錄(Whole-cell...

  • 美國雙分子層膜片鉗細(xì)胞功能特性
    美國雙分子層膜片鉗細(xì)胞功能特性

    資料分析:一般電學(xué)性質(zhì)∶通過I/V關(guān)系計(jì)算得到單通道電導(dǎo),觀察通道有無整流。通過離子選擇性、翻轉(zhuǎn)電位或其它通道的條件初步確定通道類型。通道動(dòng)力學(xué)分析∶開放時(shí)間、開放概率、關(guān)閉時(shí)間、通道的時(shí)間依賴性失活、開放與關(guān)閉類型(簇狀猝發(fā),Burst)樣開放與閃動(dòng)樣短暫關(guān)閉(flickering),化學(xué)門控性通道的開、關(guān)速率常數(shù)等數(shù)據(jù)。藥理學(xué)研究∶研究的藥物,阻斷劑、激動(dòng)劑或其它調(diào)制因素對通道活動(dòng)的影響情況。綜合分析得出結(jié)淪。滔博生物TOP-Bright專注基于多種離子通道靶點(diǎn)的化合物體外篩選,服務(wù)于全球藥企的膜片鉗公司,快速獲得實(shí)驗(yàn)結(jié)果,專業(yè)團(tuán)隊(duì),7*26小時(shí)隨時(shí)人工在線咨詢.膜片鉗的設(shè)計(jì)使得夾持力均勻...

  • 美國多通道膜片鉗電流鉗制
    美國多通道膜片鉗電流鉗制

    膜片鉗技術(shù)的建立1.拋光及填充好玻璃管微電極,并將它固定在電極夾持器中。2.通過一個(gè)與電極夾持器連接的導(dǎo)管給微電極內(nèi)一個(gè)壓力,一直到電極浸入記錄槽溶液中。3.當(dāng)電極浸沒在溶液中時(shí)給電極一個(gè)測定脈沖(命令電壓,如5-10ms,10mV)讀出電流,按照歐姆定律計(jì)算電阻。4.通過膜片鉗放大器的控制鍵將微電極前列的連接電位(junctionpotentials)調(diào)至零位,這種電位差是由于電極內(nèi)填充溶液與浸浴液不同離子成分的遷移造成的。5.用微操縱器將微電極前列在直視下靠近要記錄的細(xì)胞表面,并觀察電流的變化,直至阻抗達(dá)到1GΩ以上形成"干兆封接"6.調(diào)整靜息膜電位到期望的鉗位電壓的水平,使放大器從"搜尋...

1 2 3 4 5 6 7 8 ... 22 23