并且兩個為對稱設(shè)置,在所述一限位凸部101上設(shè)有凹陷部11,所述一插片21嵌入到所述凹陷部11當(dāng)中。具體的,所述第二插片22為金屬銅片,在所述一限位凸部101上設(shè)有插接槽100,所述第二插片22的一端插入到所述插接槽100當(dāng)中;并且在所述插接槽100的內(nèi)壁上設(shè)有開口104,所述第二插片22上設(shè)有卡扣凸部220,所述卡扣220可卡入到所述開口104當(dāng)中;在所述第二插片22的側(cè)壁上設(shè)有電連凸部221,所述電連凸部221與所述第二插片22一體成型;所述整流橋堆3一側(cè)設(shè)凸出部31,所述凸出部31為兩個,一個凸出部31對應(yīng)一個電連凸部221;所述凸出部31與所述電連凸部221通過焊錫連接在一起;在所述整流橋堆3的另一側(cè)設(shè)有兩個凸部32,其凸部32和凸出部31完全相同;所述凸部332所述一插片21的端部焊錫在一起;在其他實施例中,焊錫連接的方式也可采用電阻焊的連接方式,其為現(xiàn)有技術(shù)。同時在所述一限位凸部101上具有凹槽部103,所述整流橋堆3放置在所述凹槽部103當(dāng)中,從而實現(xiàn)對所述整流橋堆3進行定位。顯然,所描述的實施例是本實用新型的一部分實施例,而不是全部的實施例?;诒緦嵱眯滦椭械膶嵤├?,本領(lǐng)域普通技術(shù)人員在沒有做出創(chuàng)造性勞動前提下所獲得的所有其他實施例。 電容的容量越大,其波形越平緩,利用電容的充放電使輸出電壓的脈動幅度變小。這就是二極管的全橋整流電路。河南哪里有西門康SEMIKRON整流橋模塊
高壓端口hv通過金屬引線連接所述高壓供電基島13,進而實現(xiàn)與所述高壓供電管腳hv的連接,接地端口gnd通過金屬引線連接所述信號地基島14,進而實現(xiàn)與所述信號地管腳gnd的連接。需要說明的是,所述邏輯電路122可根據(jù)設(shè)計需要設(shè)置在不同的基島上,與所述控制芯片12的設(shè)置方式類似,在此不一一贅述作為本實施例的一種實現(xiàn)方式,所述漏極管腳drain的寬度大于,進一步設(shè)置為~1mm,以加強散熱,達(dá)到封裝熱阻的作用。本實施例的合封整流橋的封裝結(jié)構(gòu)采用三基島架構(gòu),將整流橋、功率開關(guān)管、邏輯電路及高壓續(xù)流二極管集成在一個引線框架內(nèi),由此降低封裝成本。如圖4所示,本實施例還提供一種電源模組,所述電源模組包括:本實施例的合封整流橋的封裝結(jié)構(gòu)1,第二電容c2,第三電容c3,一電感l(wèi)1,負(fù)載及第二采樣電阻rcs2。如圖4所示,所述合封整流橋的封裝結(jié)構(gòu)1的火線管腳l連接火線,零線管腳n連接零線,信號地管腳gnd接地。如圖4所示,所述第二電容c2的一端連接所述合封整流橋的封裝結(jié)構(gòu)1的高壓供電管腳hv,另一端接地。如圖4所示,所述第三電容c3的一端連接所述1高壓供電管腳hv,另一端經(jīng)由所述一電感l(wèi)1連接所述合封整流橋的封裝結(jié)構(gòu)1的漏極管腳drain。如圖4所示。 河南哪里有西門康SEMIKRON整流橋模塊MOSFET驅(qū)動功率很小,開關(guān)速度快,但導(dǎo)通壓降大,載流密度小。
金屬引線的一端設(shè)置在與管腳連接的導(dǎo)電部件上),能實現(xiàn)電連接即可,不限于本實施例。需要說明的是,所述整流橋可基于不同類型的器件選擇不同的基島實現(xiàn),不限于本實施例,任意可實現(xiàn)整流橋連接關(guān)系的設(shè)置方式均可,在此不一一贅述。如圖1所示,在本實施例中,所述功率開關(guān)管及所述邏輯電路集成于控制芯片12內(nèi)。具體地,所述功率開關(guān)管的漏極作為所述控制芯片12的漏極端口d,源極連接所述邏輯電路的采樣端口,柵極連接所述邏輯電路的控制信號輸出端(輸出邏輯控制信號);所述邏輯電路的采樣端口作為所述控制芯片12的采樣端口cs,高壓端口連接所述功率開關(guān)管的漏極,接地端口作為所述控制芯片12的接地端口gnd。所述控制芯片12的接地端口gnd連接所述信號地管腳gnd,漏極端口d連接所述漏極管腳drain,采樣端口cs連接所述采樣管腳cs。在本實施例中,所述控制芯片12的底面為襯底,通過導(dǎo)電膠或錫膏粘接于所述信號地基島14上,所述控制芯片12的接地端口gnd采用就近原則,通過金屬引線連接所述信號地基島14,進而實現(xiàn)與所述信號地管腳gnd的連接;漏極端口d通過金屬引線連接所述漏極管腳drain;采樣端口cs通過金屬引線連接所述采樣管腳cs。
全橋由四只二極管組成,有四個引腳。兩只二極管負(fù)極的連接點是全橋直流輸出端的“正極”,兩只二極管正極的連接點是全橋直流輸出端的“負(fù)極”。大多數(shù)的整流全橋上,均標(biāo)注有“+”、“-”、“~”符號.(其中“+”為整流后輸出電壓的正極,“-”為輸出電壓的負(fù)極,“~”為交流電壓輸入端),很容易確定出各電極。2)萬用表檢測法。如果組件的正、負(fù)極性標(biāo)記已模糊不清,也可采用萬用表對其進行檢測。檢測時,將萬用表置“R×1k”擋,黑表筆接全橋組件的某個引腳,用紅表筆分別測量其余三個引腳,如果測得的阻值都為無窮大,則此黑表筆所接的引腳為全橋組件的直流輸出正極;如果測得的阻值均在4~l0kΩ范圍內(nèi),則此時黑表所接的引腳為全橋組件直流輸出負(fù)極,而其余的兩個引腳則是全橋組件的交流輸入引腳。 在直流輸出引腳銅板間有兩塊連接銅板,他們分別與輸入引**流輸入導(dǎo)線)相連。
從前面對整流橋帶散熱器來實現(xiàn)其散熱過程的分析中可以看出,整流橋主要的損耗是通過其背面的散熱器來散發(fā)的,因此在此討論整流橋殼溫如何確定時,就忽約其通過引腳的傳熱量?,F(xiàn)結(jié)合RS2501M整流橋在110VAC電源模塊上應(yīng)用的損耗(大為)來分析。假設(shè)整流橋殼體外表面上的溫度為結(jié)溫(即),表面換熱系數(shù)為(在一般情況下,強迫風(fēng)冷的對流換熱系數(shù)為20~40W/m2C)。那么在環(huán)境溫度為,通過整流橋正表面散發(fā)到環(huán)境中的熱量為:忽約整流橋引腳的傳熱量,則通過整流橋背面的傳熱量為:由于在整流橋殼體表面上的兩個傳熱途徑上(殼體正面、殼體背面)的熱阻分別為:根據(jù)熱阻的定義式有:所以:由上式可以看出:整流橋的結(jié)溫與殼體正面的溫差遠(yuǎn)遠(yuǎn)小于結(jié)溫與殼體背面的溫差,也就是說,實際上整流橋的殼體正表面的溫度是遠(yuǎn)遠(yuǎn)大于其背面的溫度的。如果我們在測量時,把整流橋殼體正面溫度(通常情況下比較好測量)來作為我們計算的殼溫,那么我們就會過高地估計整流橋的結(jié)溫了!那么既然如此,我們應(yīng)該怎樣來確定計算的殼溫呢?由于整流橋的背面是和散熱器相互連接的,并且熱量主要是通過散熱器散發(fā),散熱器的基板溫度和整流橋的背面殼體溫度間只有接觸熱阻。一般而言,接觸熱阻的數(shù)值很小。 整流橋的整流作用是通過二極管的單向?qū)ㄔ韥硗瓿晒ぷ鞯摹_M口西門康SEMIKRON整流橋模塊哪里有賣的
限制蓄電池電流倒轉(zhuǎn)回發(fā)動機,保護交流發(fā)動機不被燒壞。河南哪里有西門康SEMIKRON整流橋模塊
所述負(fù)載為led燈串,所述led燈串的正極連接所述高壓供電管腳hv,負(fù)極連接所述漏極管腳drain。如圖2所示,所述一采樣電阻rcs1的一端連接所述合封整流橋的封裝結(jié)構(gòu)1的采樣管腳cs,另一端接地。本實施例的電源模組為非隔離場合的小功率led驅(qū)動電源應(yīng)用,適用于高壓線性(3w~12w)。實施例二如圖3所示,本實施例提供一種合封整流橋的封裝結(jié)構(gòu),與實施例一的不同之處在于,所述合封整流橋的封裝結(jié)構(gòu)還包括高壓續(xù)流二極管df,且功率開關(guān)管121及邏輯電路122分立設(shè)置。如圖3所示,在本實施例中,所述高壓續(xù)流二極管df采用n型二極管,所述高壓續(xù)流二極管df的負(fù)極通過導(dǎo)電膠或錫膏粘接于所述高壓供電基島13上,正極通過金屬引線連接漏極基島15,進而實現(xiàn)與所述漏極管腳drain的連接。需要說明的是,所述高壓續(xù)流二極管df也可采用p型二極管,粘接于漏極基島15上,在此不一一贅述。如圖3所示,所述功率開關(guān)管121的漏極通過導(dǎo)電膠或錫膏粘接于所述漏極基島15上,源極s通過金屬引線連接所述采樣管腳cs。所述邏輯電路122為芯片結(jié)構(gòu),其底面為絕緣材料,設(shè)置于所述信號地基島14上,控制信號輸出端out通過金屬引線連接所述功率開關(guān)管121的柵極g,采樣端口cs通過金屬引線連接所述采樣管腳cs。 河南哪里有西門康SEMIKRON整流橋模塊