海南進(jìn)口SEMIKRON西門(mén)康IGBT模塊廠家電話

來(lái)源: 發(fā)布時(shí)間:2024-05-04

    圖1所示為一個(gè)N溝道增強(qiáng)型絕緣柵雙極晶體管結(jié)構(gòu),N+區(qū)稱(chēng)為源區(qū),附于其上的電極稱(chēng)為源極。N+區(qū)稱(chēng)為漏區(qū)。器件的控制區(qū)為柵區(qū),附于其上的電極稱(chēng)為柵極。溝道在緊靠柵區(qū)邊界形成。在漏、源之間的P型區(qū)(包括P+和P一區(qū))(溝道在該區(qū)域形成),稱(chēng)為亞溝道區(qū)(Subchannelregion)。而在漏區(qū)另一側(cè)的P+區(qū)稱(chēng)為漏注入?yún)^(qū)(Draininjector),它是IGBT特有的功能區(qū),與漏區(qū)和亞溝道區(qū)一起形成PNP雙極晶體管,起發(fā)射極的作用,向漏極注入空穴,進(jìn)行導(dǎo)電調(diào)制,以降低器件的通態(tài)電壓。附于漏注入?yún)^(qū)上的電極稱(chēng)為漏極。IGBT的開(kāi)關(guān)作用是通過(guò)加正向柵極電壓形成溝道,給PNP晶體管提供基極電流,使IGBT導(dǎo)通。反之,加反向門(mén)極電壓消除溝道,切斷基極電流,使IGBT關(guān)斷。IGBT的驅(qū)動(dòng)方法和MOSFET基本相同,只需控制輸入極N一溝道MOSFET,所以具有高輸入阻抗特性。當(dāng)MOSFET的溝道形成后,從P+基極注入到N一層的空穴(少子),對(duì)N一層進(jìn)行電導(dǎo)調(diào)制,減小N一層的電阻,使IGBT在高電壓時(shí),也具有低的通態(tài)電壓。IGBT和可控硅區(qū)別IGBT與晶閘管1.整流元件(晶閘管)簡(jiǎn)單地說(shuō):整流器是把單相或三相正弦交流電流通過(guò)整流元件變成平穩(wěn)的可調(diào)的單方向的直流電流。其實(shí)現(xiàn)條件主要是依靠整流管。 IGBT的轉(zhuǎn)移特性是指輸出漏極電流Id與柵源電壓Ugs之間的關(guān)系曲線。海南進(jìn)口SEMIKRON西門(mén)康IGBT模塊廠家電話

SEMIKRON西門(mén)康IGBT模塊

    因?yàn)楦咚匍_(kāi)斷和關(guān)斷會(huì)產(chǎn)生很高的尖峰電壓,及有可能造成IGBT自身或其他元件擊穿。(3)IGBT開(kāi)通后,驅(qū)動(dòng)電路應(yīng)提供足夠的電壓、電流幅值,使IGBT在正常工作及過(guò)載情況下不致退出飽和而損壞。(4)IGBT驅(qū)動(dòng)電路中的電阻RG對(duì)工作性能有較大的影響,RG較大,有利于抑制IGBT的電流上升率及電壓上升率,但會(huì)增加IGBT的開(kāi)關(guān)時(shí)間和開(kāi)關(guān)損耗;RG較小,會(huì)引起電流上升率增大,使IGBT誤導(dǎo)通或損壞。RG的具體數(shù)據(jù)與驅(qū)動(dòng)電路的結(jié)構(gòu)及IGBT的容量有關(guān),一般在幾歐~幾十歐,小容量的IGBT其RG值較大。(5)驅(qū)動(dòng)電路應(yīng)具有較強(qiáng)的抗干擾能力及對(duì)IG2BT的保護(hù)功能。IGBT的控制、驅(qū)動(dòng)及保護(hù)電路等應(yīng)與其高速開(kāi)關(guān)特性相匹配,另外,在未采取適當(dāng)?shù)姆漓o電措施情況下,G—E斷不能開(kāi)路。四、IGBT的結(jié)構(gòu)IGBT是一個(gè)三端器件,它擁有柵極G、集電極c和發(fā)射極E。IGBT的結(jié)構(gòu)、簡(jiǎn)化等效電路和電氣圖形符號(hào)如圖所示。如圖所示為N溝道VDMOSFFT與GTR組合的N溝道IGBT(N-IGBT)的內(nèi)部結(jié)構(gòu)斷面示意圖。IGBT比VDMOSFET多一層P+注入?yún)^(qū),形成丁一個(gè)大面積的PN結(jié)J1。由于IGBT導(dǎo)通時(shí)由P+注入?yún)^(qū)向N基區(qū)發(fā)射少子,因而對(duì)漂移區(qū)電導(dǎo)率進(jìn)行調(diào)制,可仗IGBT具有很強(qiáng)的通流能力。介于P+注入?yún)^(qū)與N-漂移區(qū)之間的N+層稱(chēng)為緩沖區(qū)。 安徽哪里有SEMIKRON西門(mén)康IGBT模塊IGBT是將強(qiáng)電流、高壓應(yīng)用和快速終端設(shè)備用垂直功率MOSFET的自然進(jìn)化。

海南進(jìn)口SEMIKRON西門(mén)康IGBT模塊廠家電話,SEMIKRON西門(mén)康IGBT模塊

    公共柵極單元100與第1發(fā)射極單元101和第二發(fā)射極單元201之間通過(guò)刻蝕方式進(jìn)行隔開(kāi);第二表面上設(shè)有工作區(qū)域10和電流檢測(cè)區(qū)域20的公共集電極單元200;接地區(qū)域30則設(shè)置于第1發(fā)射極單元101內(nèi)的任意位置處;電流檢測(cè)區(qū)域20和接地區(qū)域30分別用于與檢測(cè)電阻40連接,以使檢測(cè)電阻40上產(chǎn)生電壓,并根據(jù)電壓檢測(cè)工作區(qū)域10的工作電流。具體地,工作區(qū)域10和電流檢測(cè)區(qū)域20具有公共柵極單元100和公共集電極單元200,此外,電流檢測(cè)區(qū)域20還具有第二發(fā)射極單元201和第三發(fā)射極單元202,檢測(cè)電阻40則分別與第二發(fā)射極單元201和接地區(qū)域30連接。此時(shí),在電流檢測(cè)過(guò)程中,工作區(qū)域10由公共柵極單元100提供驅(qū)動(dòng),以使公共集電極單元200上的電流ic通過(guò)第二發(fā)射極單元201達(dá)到檢測(cè)電阻40,從而可以在檢測(cè)電阻40上產(chǎn)生測(cè)試電壓vs,進(jìn)而可以根據(jù)該測(cè)試電壓vs檢測(cè)工作區(qū)域10的工作電流。因此,在上述電流檢測(cè)過(guò)程中,電流檢測(cè)區(qū)域20的第二發(fā)射極單元201相當(dāng)于沒(méi)有公共柵極單元100提供驅(qū)動(dòng),即對(duì)于igbt芯片的電子和空穴兩種載流子形成的電流,電流檢測(cè)區(qū)域20的第二發(fā)射極單元201只獲取空穴形成的電流作為檢測(cè)電流,從而避免了檢測(cè)電流受公共柵極單元100的電壓的影響。

    對(duì)于本領(lǐng)域普通技術(shù)人員來(lái)講,在不付出創(chuàng)造性勞動(dòng)的前提下,還可以根據(jù)這些附圖獲得其他的附圖。圖1為本發(fā)明實(shí)施例提供的一種igbt器件的結(jié)構(gòu)圖;圖2為本發(fā)明實(shí)施例提供的一種電流敏感器件的結(jié)構(gòu)圖;圖3為本發(fā)明實(shí)施例提供的一種kelvin連接示意圖;圖4為本發(fā)明實(shí)施例提供的一種檢測(cè)電流與工作電流的曲線圖;圖5為本發(fā)明實(shí)施例提供的一種igbt芯片的結(jié)構(gòu)示意圖;圖6為本發(fā)明實(shí)施例提供的另一種igbt芯片的結(jié)構(gòu)示意圖;圖7為本發(fā)明實(shí)施例提供的一種igbt芯片的表面結(jié)構(gòu)示意圖;圖8為本發(fā)明實(shí)施例提供的另一種igbt芯片的表面結(jié)構(gòu)示意圖;圖9為本發(fā)明實(shí)施例提供的另一種igbt芯片的表面結(jié)構(gòu)示意圖;圖10為本發(fā)明實(shí)施例提供的另一種igbt芯片的表面結(jié)構(gòu)示意圖;圖11為本發(fā)明實(shí)施例提供的另一種igbt芯片的表面結(jié)構(gòu)示意圖;圖12為本發(fā)明實(shí)施例提供的另一種igbt芯片的表面結(jié)構(gòu)示意圖;圖13為本發(fā)明實(shí)施例提供的另一種igbt芯片的表面結(jié)構(gòu)示意圖;圖14為本發(fā)明實(shí)施例提供的另一種igbt芯片的表面結(jié)構(gòu)示意圖;圖15為本發(fā)明實(shí)施例提供的一種半導(dǎo)體功率模塊的結(jié)構(gòu)示意圖;圖16為本發(fā)明實(shí)施例提供的一種半導(dǎo)體功率模塊的連接示意圖。圖標(biāo):1-電流傳感器;10-工作區(qū)域;101-第1發(fā)射極單元。 IGBT(InsulatedGateBipolarTransistor)。

海南進(jìn)口SEMIKRON西門(mén)康IGBT模塊廠家電話,SEMIKRON西門(mén)康IGBT模塊

    術(shù)語(yǔ)“中心”、“上”、“下”、“左”、“右”、“豎直”、“水平”、“內(nèi)”、“外”等指示的方位或位置關(guān)系為基于附圖所示的方位或位置關(guān)系,是為了便于描述本發(fā)明和簡(jiǎn)化描述,而不是指示或暗示所指的裝置或元件必須具有特定的方位、以特定的方位構(gòu)造和操作,因此不能理解為對(duì)本發(fā)明的限制。此外,術(shù)語(yǔ)“第1”、“第二”、“第三”用于描述目的,而不能理解為指示或暗示相對(duì)重要性。應(yīng)說(shuō)明的是:以上所述實(shí)施例,為本發(fā)明的具體實(shí)施方式,用以說(shuō)明本發(fā)明的技術(shù)方案,而非對(duì)其限制,本發(fā)明的保護(hù)范圍并不局限于此,盡管參照前述實(shí)施例對(duì)本發(fā)明進(jìn)行了詳細(xì)的說(shuō)明,本領(lǐng)域的普通技術(shù)人員應(yīng)當(dāng)理解:任何熟悉本技術(shù)領(lǐng)域的技術(shù)人員在本發(fā)明揭露的技術(shù)范圍內(nèi),其依然可以對(duì)前述實(shí)施例所記載的技術(shù)方案進(jìn)行修改或可輕易想到變化,或者對(duì)其中部分技術(shù)特征進(jìn)行等同替換;而這些修改、變化或者替換,并不使相應(yīng)技術(shù)方案的本質(zhì)脫離本發(fā)明實(shí)施例技術(shù)方案的精神和范圍,都應(yīng)涵蓋在本發(fā)明的保護(hù)范圍之內(nèi)。因此,本發(fā)明的保護(hù)范圍應(yīng)所述以權(quán)利要求的保護(hù)范圍為準(zhǔn)。 IGBT綜合了以上兩種器件的優(yōu)點(diǎn),驅(qū)動(dòng)功率小而飽和壓降低。安徽哪里有SEMIKRON西門(mén)康IGBT模塊

電動(dòng)汽車(chē)概念也火的一塌糊涂,西門(mén)康推出了650V等級(jí)的IGBT,專(zhuān)門(mén)用于電動(dòng)汽車(chē)行業(yè)。海南進(jìn)口SEMIKRON西門(mén)康IGBT模塊廠家電話

    將igbt模塊中雙極型三極管bjt的集電極和絕緣柵型場(chǎng)效應(yīng)管mos的漏電極斷開(kāi),并替代包含鏡像電流測(cè)試的電路中的取樣igbt,從而得到包含無(wú)柵極驅(qū)動(dòng)的電流檢測(cè)的igbt芯片的等效測(cè)試電路,即圖5中的igbt芯片結(jié)構(gòu),從而得到第二發(fā)射極單元201和第三發(fā)射極單元202,此時(shí),bjt的集電極單獨(dú)引出,即第二發(fā)射極單元201,作為測(cè)試電流的等效電路,電流檢測(cè)區(qū)域20只取bjt的空穴電流作為檢測(cè)電流,且,空穴電流與工作區(qū)域10的工作電流成比例關(guān)系,從而通過(guò)檢測(cè)電流檢測(cè)區(qū)域20中的電流即可得到igbt芯片的工作區(qū)域10的電流,避免了現(xiàn)有方法中柵極對(duì)地電位變化造成的偏差,提高了檢測(cè)電流的精度。此外,在第1表面上,電流檢測(cè)區(qū)域20設(shè)置在工作區(qū)域10的邊緣區(qū)域,且,電流檢測(cè)區(qū)域20的面積小于工作區(qū)域10的面積。此外,igbt芯片為溝槽結(jié)構(gòu)的igbt芯片,在電流檢測(cè)區(qū)域20和工作區(qū)域10的對(duì)應(yīng)位置內(nèi)分別設(shè)置多個(gè)溝槽,可選的,電流檢測(cè)區(qū)域20和工作區(qū)域10可以同時(shí)設(shè)置有多個(gè)溝槽,或者,工作區(qū)域10設(shè)置有多個(gè)溝槽,本發(fā)明實(shí)施例對(duì)此不作限制說(shuō)明。以及,當(dāng)設(shè)置有溝槽時(shí),在每個(gè)溝槽內(nèi)還填充有多晶硅。此外,在第1表面和第二表面之間,還設(shè)置有n型耐壓漂移層和導(dǎo)電層。 海南進(jìn)口SEMIKRON西門(mén)康IGBT模塊廠家電話