本實用新型將整流橋和系統(tǒng)其他功能芯片集成封裝,節(jié)約系統(tǒng)多芯片封裝成本,并有助于系統(tǒng)小型化。綜上所述,本實用新型提供一種合封整流橋的封裝結構及電源模組,包括:塑封體,設置于所述塑封體邊緣的火線管腳、零線管腳、高壓供電管腳、信號地管腳、漏極管腳、采樣管腳,以及設置于所述塑封體內的整流橋、功率開關管、邏輯電路、至少兩個基島;其中,所述整流橋包括四個整流二極管,各整流二極管的正極和負極分別通過基島或引線連接至對應管腳;所述邏輯電路連接對應管腳,產生邏輯控制信號;所述功率開關管的柵極連接所述邏輯控制信號,漏極及源極分別連接對應管腳;所述功率開關管及所述邏輯電路分立設置或集成于控制芯片內。本實用新型的合封整流橋的封裝結構及電源模組將整流橋、功率開關管、邏輯電路通過一個引線框架封裝在同一個塑封體中,以此減小封裝成本。所以,本實用新型有效克服了現(xiàn)有技術中的種種缺點而具高度產業(yè)利用價值。上述實施例例示性說明本實用新型的原理及其功效,而非用于限制本實用新型。任何熟悉此技術的人士皆可在不違背本實用新型的精神及范疇下,對上述實施例進行修飾或改變。 整流橋,就是將橋式整流的四個二極管封裝在一起,只引出四個引腳。天津西門康SEMIKRON整流橋模塊聯(lián)系方式
③由于此時整流橋的散熱狀況與散熱器的熱阻密切相關,因此散熱器熱阻的大小將直接影響到整流橋上溫度的高低。由此可以看出,在生產廠家所提供的整流橋參數(shù)表中關于整流橋帶散熱器的熱阻時,只可能是整流橋背面的結--殼(Rjc)或整流橋殼體上的總的結--殼熱阻(正面和背面熱阻的并聯(lián));此時的結--環(huán)境的熱阻已經沒有參考價值,因為它是隨著散熱器的熱阻而明顯地發(fā)生變化的。折疊殼溫確定整流橋在強迫風冷冷卻時殼溫的確定由以上兩種情況三種不同散熱冷卻形式的分析與計算,我們可以得出:在整流橋自然冷卻時,我們可以直接采用生產廠家所提供的結--環(huán)境熱阻(Rja),來計算整流橋的結溫,從而可以方便地檢驗我們的設計是否達到功率元器件的溫度降額標準;對整流橋采用不帶散熱器的強迫風冷情況,由于在實際使用中很少采用,在此不予太多的討論。如果在應用中的確涉及該種情形,可以借鑒整流橋自然冷卻的計算方法;對整流橋采用散熱器進行冷卻時,我們只能參考廠家給我們提供的結--殼熱阻(Rjc),通過測量整流橋的殼溫從而推算出其結溫,達到檢驗目的。在此,我們著重討論該計算殼溫測量點的選取及其相關的計算方法,并提出一種在實際應用中可行、在計算中又可靠的測量方法。 江西代理西門康SEMIKRON整流橋模塊服務電話傳統(tǒng)的多脈沖變壓整流器采用隔離變壓器實現(xiàn)輸入電壓和輸出電壓的隔離,整流變壓器的等效容量大,體積龐大。
以上就是ASEMI對于整流橋接法的兩個方面介紹正、負極性全波整流電路及故障處理如圖9-24所示是能夠輸出正、負極性單向脈動直流電壓的全波整流電路。電路中的T1是電源變壓器,它的次級線圈有一個中心抽頭,抽頭接地。電路由兩組全波整流電路構成,VD2和VD4構成一組正極性全波整流電路,VD1和VD3構成另一組負極性全波整流電路,兩組全波整流電路共用次級線圈。圖9-24輸出正、負極性直流電壓的全波整流電路1.電路分析方法關于正、負極性全波整流電路分析方法說明下列2點:(1)在確定了電路結構之后,電路分析方法和普通的全波整流電路一樣,只是需要分別分析兩組不同極性全波整流電路,如果已經掌握了全波整流電路的工作原理,則只需要確定兩組全波整流電路的組成,而不必具體分析電路。(2)確定整流電路輸出電壓極性的方法是:兩二極管負極相連的是正極性輸出端(VD2和VD4連接端),兩二極管正極相連的是負極性輸出端(VD1和VD3連接端)。2.電路工作原理分析如表9-28所示是這一正、負極性全波整流電路的工作原理解說。3.故障檢測方法關于這一電路的故障檢測方法說明下列幾點:(1)如果正極性和負極性直流輸出電壓都不正常時,可以不必檢查整流二極管。
并且兩個為對稱設置,在所述一限位凸部101上設有凹陷部11,所述一插片21嵌入到所述凹陷部11當中。具體的,所述第二插片22為金屬銅片,在所述一限位凸部101上設有插接槽100,所述第二插片22的一端插入到所述插接槽100當中;并且在所述插接槽100的內壁上設有開口104,所述第二插片22上設有卡扣凸部220,所述卡扣220可卡入到所述開口104當中;在所述第二插片22的側壁上設有電連凸部221,所述電連凸部221與所述第二插片22一體成型;所述整流橋堆3一側設凸出部31,所述凸出部31為兩個,一個凸出部31對應一個電連凸部221;所述凸出部31與所述電連凸部221通過焊錫連接在一起;在所述整流橋堆3的另一側設有兩個凸部32,其凸部32和凸出部31完全相同;所述凸部332所述一插片21的端部焊錫在一起;在其他實施例中,焊錫連接的方式也可采用電阻焊的連接方式,其為現(xiàn)有技術。同時在所述一限位凸部101上具有凹槽部103,所述整流橋堆3放置在所述凹槽部103當中,從而實現(xiàn)對所述整流橋堆3進行定位。顯然,所描述的實施例是本實用新型的一部分實施例,而不是全部的實施例。基于本實用新型中的實施例,本領域普通技術人員在沒有做出創(chuàng)造性勞動前提下所獲得的所有其他實施例。 整流橋由控制器的控制角控制,當控制角為0°~90°時,整流橋處于整流狀態(tài),輸出電壓的平均值為正。
整流橋模塊的損壞原因及解決辦法:-整流橋模塊損壞,通常是由于電網電壓或內部短路引起。在排除內部短路情況下,我們可以更換整流橋模塊。而導致整流橋損壞的原因有以下5個原因1、散熱片不夠大,過載沖擊電流過大,熱量散發(fā)不出來。2、負載短路,絕緣不好,負荷電流過大引起;3、頻繁的啟停電源,若是感性負載屬于儲能元件!那么會產生反電動勢。將整流元件反向擊穿。在橋整流時只要一個壞了。則對稱橋臂必燒壞!4、個別元件使用時間較長,質量下降!5、輸入電壓過高。整流橋模塊壞了的解決辦法(1)找到引起整流橋模塊損壞的根本原因,并消除,防止換上新整流橋又發(fā)生損壞。(2)更換新整流橋模塊,對焊接的整流橋模塊需確保焊接可靠。確保與周邊元件的電氣安全間距,用螺釘聯(lián)接的要擰緊,防止接觸電阻大而發(fā)熱。與散熱器有傳導導熱的,要求涂好硅脂降低熱阻。(3)對并聯(lián)整流橋模塊要用同一型號、同一廠家的產品以避免電流不均勻而損壞。 MOSFET驅動功率很小,開關速度快,但導通壓降大,載流密度小。北京進口西門康SEMIKRON整流橋模塊
二極管只允許電流單向通過,所以將其接入交流電路時它能使電路中的電流只按單向流動。天津西門康SEMIKRON整流橋模塊聯(lián)系方式
負極連接所述高壓續(xù)流二極管的負極;所述高壓續(xù)流二極管的正極通過基島或引線連接所述漏極管腳;所述邏輯電路的高壓端口連接所述高壓供電管腳。為實現(xiàn)上述目的及其他相關目的,本實用新型還提供一種電源模組,所述電源模組至少包括:上述合封整流橋的封裝結構,一電容,負載及一采樣電阻;所述合封整流橋的封裝結構的火線管腳連接火線,零線管腳連接零線,信號地管腳接地;所述一電容的一端連接所述合封整流橋的封裝結構的高壓供電管腳,另一端接地;所述負載連接于所述合封整流橋的封裝結構的高壓供電管腳與漏極管腳之間;所述一采樣電阻的一端連接所述合封整流橋的封裝結構的采樣管腳,另一端接地。為實現(xiàn)上述目的及其他相關目的,本實用新型還提供一種電源模組,所述電源模組至少包括:上述合封整流橋的封裝結構,第二電容,第三電容,一電感,負載及第二采樣電阻;所述合封整流橋的封裝結構的火線管腳連接火線,零線管腳連接零線,信號地管腳接地;所述第二電容的一端連接所述合封整流橋的封裝結構的高壓供電管腳,另一端接地;所述第三電容的一端連接所述合封整流橋的封裝結構的高壓供電管腳,另一端經由所述一電感連接所述合封整流橋的封裝結構的漏極管腳。 天津西門康SEMIKRON整流橋模塊聯(lián)系方式