1、焊盤:焊盤是金屬區(qū)域,用于連接電子元件。通過焊接技術,元件引腳與焊盤連接,形成電氣和機械連接。常見的焊盤形狀有圓形、橢圓形和方形。
2、過孔:過孔是連接不同層次導線的通道。它們允許信號和電力在不同層之間傳輸,分為通孔和盲以及埋孔。
3、插件孔:插件孔用于插入連接器或外部組件,實現(xiàn)設備的連接或模塊化更換。
4、安裝孔:用于固定PCB在設備內(nèi)部的位置,通常通過螺釘或螺母安裝在機殼或框架上。
5、阻焊層:保護焊盤并阻止意外焊接,防止焊料滲透到不需要焊接的區(qū)域。
6、字符:包括元件值、位置標識、生產(chǎn)日期等信息。字符有助于組裝、調(diào)試和維護,清晰的字符標識有助于減少錯誤和提高生產(chǎn)效率。
7、反光點:用于AOI(自動光學檢測)系統(tǒng),幫助機器視覺系統(tǒng)進行準確的定位和檢測,提高生產(chǎn)質(zhì)量和效率。
8、導線圖形:包括導線、跟蹤和連接,表示電路布局和連接方式。
9、內(nèi)層:多層PCB中的導線層,用于連接外層和傳遞信號。
10、外層:頂層和底層,通常用于焊接元件和提供外部連接。 深圳普林電路提供種類齊全的線路板,包括單面、雙面和多層板,滿足不同應用需求。深圳HDI線路板
相較于其他表面處理方法,沉銀工藝相對簡單且成本更低,這使得它成為許多中小型企業(yè)的優(yōu)先選擇。簡單的工藝流程不僅減少了生產(chǎn)成本,還加快了產(chǎn)品上市時間,推動產(chǎn)品迭代速度。
沉銀工藝提供的平整焊盤表面是明顯的優(yōu)點之一。對于高密度焊接應用,如微焊球陣列(WLCSP),焊盤的平整度至關重要。雖然沉銀能夠滿足大部分高密度焊接的要求,但在極高要求的應用中,可能需要更精細的表面處理。
然而,銀的易氧化特性是一個需要特別注意的問題。氧化會降低銀的可焊性,進而影響焊接質(zhì)量。因此,在沉銀工藝中,需要采取有效的防氧化措施。例如,可以在存儲和運輸過程中使用防氧化劑或采用適當?shù)陌b方法,以確保焊盤表面的穩(wěn)定性和可靠性。
此外,沉銀層在經(jīng)歷多次焊接后可能會出現(xiàn)可焊性下降的問題。為此,在設計和制造階段,必須仔細考慮焊接次數(shù)和工藝參數(shù),以避免影響產(chǎn)品的焊接質(zhì)量和可靠性。這對于高可靠性要求的電子產(chǎn)品尤為重要。
制造商在選擇表面處理方法時,需要根據(jù)具體的應用背景和需求,權衡沉銀的優(yōu)點和缺點。普林電路作為經(jīng)驗豐富的PCB線路板制造商,能夠根據(jù)客戶的需求和應用場景,提供適合的表面處理解決方案,確保產(chǎn)品的性能和可靠性。 廣東通訊線路板價格深圳普林電路提供高質(zhì)量的厚銅線路板,出色的EMI/RFI抑制能力確保您的產(chǎn)品穩(wěn)定可靠,適用各種高性能應用。
在PCB線路板制造中,板材性能受多個特征和參數(shù)的綜合影響,普林電路會根據(jù)客戶需求精選板材:
1、Tg值(玻璃化轉(zhuǎn)變溫度):Tg值是將基板由固態(tài)轉(zhuǎn)變?yōu)橄鹉z態(tài)流質(zhì)的臨界溫度,即熔點參數(shù)。
影響:Tg值越高,板材的耐熱性越好,在高溫環(huán)境下工作的電路板應選擇具有較高Tg值的板材。
2、DK介電常數(shù)(Dielectric Constant):是規(guī)定形狀電極填充電介質(zhì)獲得的電容量與相同電極之間為真空時的電容量之比。
影響:介電常數(shù)決定電信號在介質(zhì)中傳播的速度,低介電常數(shù)有利于提高信號傳輸速度。
3、Df損耗因子(Dissipation Factor):是描述絕緣材料或電介質(zhì)在交變電場中因電介質(zhì)電導和極化滯后效應而導致的能量損耗。
影響:Df值越小,損耗越小。低損耗因子的板材能有效減少能量損失,提高電路性能。
4、CTE熱膨脹系數(shù)(Coefficient of Thermal Expansion):是物體由于溫度改變而產(chǎn)生的脹縮現(xiàn)象,單位為ppm/℃。
影響:CTE值的高低影響板材在溫度變化下的穩(wěn)定性,較低的CTE值表示板材在溫度變化時更穩(wěn)定。
5.阻燃等級:分為94V-0、94V-1、94V-2和94-HB四種等級。
影響:高阻燃等級表示更好的防火性能。在許多電子產(chǎn)品中,尤其是消費電子、工業(yè)控制和汽車電子等領域,阻燃性是確保安全性的關鍵因素。
在選擇PCB線路板材料時,普林電路的工程師會仔細評估多種基材特性:
1、介電常數(shù):影響信號傳輸速度和傳播延遲。對于高頻應用,低介電常數(shù)能提高信號傳輸速度,減少延遲和信號失真。
2、損耗因子:衡量材料的信號損耗能力。對于高頻電路而言,損耗因子能減少能量損耗,提高電路效率和性能。
3、熱穩(wěn)定性:材料在高溫環(huán)境下能保持穩(wěn)定性,可以避免因熱膨脹或變形而導致的電路故障。
4、尺寸穩(wěn)定性:材料在溫度和濕度變化時的尺寸穩(wěn)定性是確保電路精度和可靠性的關鍵。
5、機械強度:材料的彎曲強度、壓縮強度和拉伸強度等特性對電路板的物理可靠性和耐久性有直接影響。高機械強度材料能提高電路板的抗沖擊和耐磨損能力。
6、吸濕性:在濕度變化較大的環(huán)境中,選擇低吸濕性的材料可以確保電路板的電氣性能穩(wěn)定。
7、玻璃轉(zhuǎn)化溫度(Tg值):高Tg值材料在高溫環(huán)境下性能更穩(wěn)定,避免電路板軟化或變形。
8、化學穩(wěn)定性:高化學穩(wěn)定性材料能防止化學腐蝕,延長電路板壽命。
9、可加工性:材料加工的難易程度直接影響制造成本和工藝流程。
10、成本:工程師需要在性能和成本之間取得平衡,以選擇具有性價比的材料。
通過精細的材料選擇和優(yōu)化,普林電路能滿足客戶的性能需求,還能有效控制成本。 HDI電路板采用微孔技術,提升了可靠性和機械強度,適用于醫(yī)療電子設備等高要求領域。
PCB線路板的耐熱可靠性是確保其在各種應用環(huán)境中穩(wěn)定運行的關鍵。為了達到這一目標,普林電路從兩個主要方面入手:提高線路板本身的耐熱性以及改善其導熱性能和散熱性能。
1、選擇高Tg的樹脂基材:高Tg樹脂基材能夠在高溫環(huán)境下保持結構穩(wěn)定性,不易軟化或失效。高Tg材料能顯著提高PCB的“軟化”溫度,防止在焊接或高溫工作環(huán)境中發(fā)生變形。
2、選用低CTE材料:熱膨脹系數(shù)(CTE)是衡量材料在溫度變化下尺寸變化率的參數(shù)。通過選用低CTE基材,可以有效減小熱應力積累,提高PCB的整體可靠性。
1、選擇導熱性能優(yōu)異的材料:我們精心挑選具有良好導熱性能的材料,例如金屬內(nèi)層。這些材料能夠有效傳遞和分散熱量,降低PCB的工作溫度,還能防止局部過熱,延長PCB的使用壽命。
2、設計散熱結構:通過優(yōu)化PCB的設計,我們增加了多種散熱結構,如散熱孔、散熱片等。這些結構能夠提高熱量的傳導和散熱效率,有效降低PCB的整體工作溫度。
3、使用散熱材料:在某些情況下,我們采用專門的散熱材料來進一步改善PCB的散熱性能。這些材料包括散熱膠、散熱墊等,能夠有效提高PCB的整體散熱效果,確保其在高溫環(huán)境下依然保持穩(wěn)定的溫度。 SprintPCB擁有17年的剛性線路板制造經(jīng)驗,是行業(yè)內(nèi)值得信賴的合作伙伴。深圳HDI線路板
高頻PCB憑借出色的信號傳輸能力和環(huán)境適應性,廣泛應用于雷達、衛(wèi)星通信、RFID等高科技領域。深圳HDI線路板
尺寸和重量的優(yōu)化:HDI技術允許在PCB的兩側緊湊地安置組件,從而實現(xiàn)更高的集成度。這種設計方式使得設備可以更加小巧輕便,符合當前電子產(chǎn)品輕薄化的趨勢。例如,智能手機、平板電腦和可穿戴設備等便攜式電子產(chǎn)品,都采用HDI線路板來提升其功能和便攜性。
電氣性能的提升:HDI線路板通過縮短元件之間的距離和增加晶體管的數(shù)量,能夠明顯提高電氣性能。這種提升不僅包括降低功耗和提高信號完整性,還體現(xiàn)在更快的信號傳輸速度和更低的信號損失上。這對于要求高性能和高可靠性的設備,如通信設備、高頻應用和高速數(shù)據(jù)傳輸設備,尤為重要。
成本效益:盡管HDI技術初期投資較高,但通過精心規(guī)劃和制造,能實現(xiàn)的較小尺寸和層數(shù)較少,意味著需要更少的原材料。對于復雜的電子產(chǎn)品而言,使用一個HDI板取代多個傳統(tǒng)PCB,可以大幅減少材料成本,同時提升功能和價值。這種高效的成本管理,使得HDI線路板在長遠來看更有經(jīng)濟優(yōu)勢。
生產(chǎn)時間的縮短:由于其設計更高效、使用材料更少,HDI線路板的生產(chǎn)周期通常較短。這不僅加快了產(chǎn)品推向市場的速度,還減少了生產(chǎn)時間和成本,使企業(yè)能夠更快速地響應市場需求,保持競爭優(yōu)勢。
深圳HDI線路板