嘉興電絕緣氧化鋁哪家好

來源: 發(fā)布時間:2023-11-10

氮化鋁陶瓷基板作為一種新型陶瓷基板,具有導熱效率高、力學性能好、耐腐蝕、電性能優(yōu)、可焊接等特點,是理想的大規(guī)模集成電路散熱基板和封裝材料。作為DPC、DBC、AMB等陶瓷覆銅板的陶瓷基板之一,氮化鋁陶瓷基板用量十分巨大。因制備難度較大,目前國內氮化鋁陶瓷基板仍以進口為主。氮化鋁具有六方纖鋅礦晶體結構,具有密度低、強度高、耐熱性好、導熱系數高、耐腐蝕等優(yōu)點。由于鋁和氮的原子序數小,氮化鋁本身具有很高的熱導率,其理論熱導率可達319W/m·K。然而,在實際產品中,氮化鋁的晶體結構不能完全均均勻分布,并且存在許多雜質和缺陷,使得其熱導率低至170-230W/m·K。直接氮化法:直接氮化法就是在高溫的氮氣氣氛中,鋁粉直接與氮氣化合生成氮化鋁粉體。嘉興電絕緣氧化鋁哪家好

嘉興電絕緣氧化鋁哪家好,氮化鋁

氮化鋁是一種綜合性能優(yōu)良的陶瓷材料,由于氮化鋁是共價化合物,自擴散系數小,熔點高,導致其難以燒結,直到20世紀50年代,人們才成功制得氮化鋁陶瓷,并作為耐火材料應用于純鐵、鋁以及鋁合金的熔煉。自20世紀70年代以來,隨著研究的不斷深入,氮化鋁的制備工藝日趨成熟,其應用范圍也不斷擴大。尤其是進入21世紀以來,隨著微電子技術的飛速發(fā)展,電子整機和電子元器件正朝微型化、輕型化、集成化,以及高可靠性和大功率輸出等方向發(fā)展,越來越復雜的器件對基片和封裝材料的散熱提出了更高要求,進一步促進了氮化鋁產業(yè)的蓬勃發(fā)展。東莞片狀氮化鋁粉體廠家氮化鋁的應用:應用于襯底材料,AlN晶體是GaN、AlGaN以及AlN外延材料的理想襯底。

嘉興電絕緣氧化鋁哪家好,氮化鋁

氮化鋁粉體的合成方法:直接氮化法:在高溫氮氣氛圍中,鋁粉直接與氮氣化合生產氮化鋁粉末,反應溫度一般在800℃~1200℃。反應式為:2Al+N2→2AlN。該方法的缺點很明顯,在反應初期,鋁粉顆粒表面會逐漸生成氮化物膜,使氮氣難以進一步滲透,阻礙氮氣反應,致使產率較低;又由于鋁和氮氣之間的反應是強放熱反應,速度很快,造成AlN粉體自燒結,形成團聚,使得粉體顆粒粗化。碳熱還原法:將氧化鋁粉末和碳粉的混合粉末在高溫下(1400℃~1800℃)的流動氮氣中發(fā)生還原氮化反應生成AlN粉末。其反應式為:Al2O3+3C+N2→2AlN+3CO。該方法的主要難點在于,對氧化鋁和碳的原料要求比較高,原料難以混合均勻,氮化溫度較高,合成時間較長,而且還需對過量的碳進行除碳處理,工藝復雜,制備成本較高。

AIN氮化鋁陶瓷作為一種綜合性能優(yōu)良的新型陶瓷材料,因其氮化鋁陶瓷具有優(yōu)良的熱傳導性,可靠的電絕緣性,低的介電常數和介電損耗,無毒以及與硅相匹配的熱膨脹系數等一系列優(yōu)良特性,被認為是新一代高集成度半導體基片和電子器件封裝的理想材料。氮化鋁陶瓷可做成氮化鋁陶瓷基板,被較廣應用到散熱需求較高的領域,比如大功率LED模組,半導體等領域。高性能氮化鋁粉體是制備高熱導率氮化鋁陶瓷基片的關鍵,目前國外氮化鋁粉制造工藝已經相當成熟,商品化程度也很高。但掌握高性能氮化鋁粉生產技術的廠家并不多,主要分布在日本、德國和美國。氮化鋁粉末作為制備陶瓷成品的原料,其純度、粒度、氧含量以及其它雜質的含量都對后續(xù)成品的熱導性能、后續(xù)燒結,成型工藝有重要影響,是很終成品性能優(yōu)異與否的基石。氮化鋁的電阻率較高,熱膨脹系數低,硬度高,化學穩(wěn)定性好但與一般絕緣體不同。

嘉興電絕緣氧化鋁哪家好,氮化鋁

影響氮化鋁陶瓷熱導率的因素:影響氮化鋁陶瓷熱導率的主要因素有晶格的氧含量、致密度、顯微結構、粉體純度等。氧含量及雜質:對于氮化鋁陶瓷來說,由于它對氧的親和作用強烈,氧雜質易于在燒結過程中擴散進入AlN晶格,與多種缺陷直接相關,是影響氮化鋁熱導率的很主要根源。在聲子-缺陷的散射中,起主要作用的是雜質氧和氧化鋁的存在,由于氮化鋁易于水解和氧化,表面形成一層氧化鋁膜,氧化鋁溶入氮化鋁晶格中產生鋁空位。使得氮化鋁晶格出現非諧性,影響聲子散射,從而使氮化鋁陶瓷熱導率急劇降低。氮化鋁室溫下與水緩慢反應.可由鋁粉在氨或氮氣氛中800~1000℃合成,產物為白色到灰藍色粉末。蘇州微米氮化鋁粉體品牌

提高氮化鋁粉末的純度,理想的氮化鋁粉料應含適量的氧。嘉興電絕緣氧化鋁哪家好

目前,氮化鋁也存在一些問題。其一是粉體在潮濕的環(huán)境極易與水中羥基形成氫氧化鋁,在AlN粉體表面形成氧化鋁層,氧化鋁晶格溶入大量的氧,降低其熱導率,而且也改變其物化性能,給AlN粉體的應用帶來困難。抑制AlN粉末的水解處理主要是借助化學鍵或物理吸附作用在AlN顆粒表面涂覆一種物質,使之與水隔離,從而避免其水解反應的發(fā)生。目前抑制水解處理的方法主要有:表面化學改性和表面物理包覆。其二是氮化鋁的價格高居不下,每公斤上千元的價格也在一定程度上限制了它的應用。制備氮化鋁粉末一般都需要較高的溫度,從而導致生產制備過程中的能耗較高,同時存在安全風險,這也是一些高溫制備方法無法實現工業(yè)化生產的主要弊端。再者是生產制備過程中的雜質摻入或者有害產物的生成問題,例如碳化還原反應過量碳粉的去除問題,以及化學氣相沉積法的氯化氫副產物的去除問題,這都要求制備氮化鋁的過程中需對反應產物進行提純,這也導致了生產制備氮化鋁的成本居高不下。嘉興電絕緣氧化鋁哪家好